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Abstract. This is a short survey illustrating some of the essential as-
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results about canonical extensions of lattices with additional operations
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1 Introduction

Associating algebraic models to propositional logics is often achieved by an
easy transcription of the syntactic specifications of such logics. This may be
through the associated Lindenbaum–Tarski algebras or through a transcription
of a Gentzen-style calculus. As a consequence, semantic modelling by such alge-
bras is often not far removed from the syntactic treatment of the logics. Rela-
tional semantics on the other hand, when available, are likely to give a signifi-
cantly different and much more powerful tool. This phenomenon is akin to that
whereby algebraists have exploited topological dualities to great advantage. One
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twist in the logic setting is that the topology doesn’t have a natural place in the
logic landscape, thus prompting logicians simply to discard it. As a consequence
we obtain, from an algebra of formulas, a topo-relational space and then, by for-
getting the topology, simply a relational structure. The complex algebra of this
structure is then an algebra based on a powerset in which the original formula
algebra embeds. This is the so-called canonical extension. It turns out that it
is abstractly characterised by three simple properties of the way it extends the
original algebra and that it is in fact a very natural completion of the algebra.
As such it provides a tool for studying Stone duality and its generalisations in an
algebraic setting which is particularly well-suited for the treatment of additional
algebraic structure on the underlying lattices or Boolean algebras.

The study of canonical extensions originated in the famous paper of B. Jónsson
and A. Tarski [11] on Boolean algebras with operators (BAOs). Amongst BAOs
are the modal algebras which supply semantic models for modal logics. The
theory has since been generalised and simplified and now includes the algebraic
counterparts of positive versions of modal logic, as well as intuitionistically based
logics and substructural logics. Canonicity, that is, the property of being closed
under canonical extension, for a class of algebraic models associated with a logic,
yields complete relational semantics for the logic and even in the absence of
canonicity canonical extensions, just like topological duality, provide a powerful
tool for studying a logic.

This short survey, which corresponds to three tutorial lectures by the first
author in Bakuriani in Fall 2009, is based on materials Hilary Priestley and the
first author are preparing for our book in the Oxford University Press Logic
Guides series on Lattices in Logic: duality, correspondence, and canonicity. The
three lectures focused in turn on: the relationship of canonical extension to topo-
logical duality and to questions of relational semantics of logics; the flavour and
form of the basic theory of canonical extensions in their own right; topological
methods in the theory of canonical extensions. This survey follows the same pat-
tern with the addition of a section on finitely generated varieties of lattices with
additional operations to illustrate the theory.

Accordingly, in Section 2 we identify the connection between questions about
relational semantics in logic, topological duality, and canonical extension. In par-
ticular, we show that topological duality gives rise to a completion satisfying the
properties which are the defining properties of canonical extension. In Section 3
we give the abstract definition of canonical extensions of arbitrary lattices. We
give a few examples and outline how the abstract properties of canonical ex-
tensions uniquely determine them thereby actually deriving an alternate way of
building canonical extensions which does not depend on the axiom of choice.
In Section 4 we consider additional operations on lattices introducing the topo-
logical approach. We give a few new results on the interaction of the lifting of
maps to canonical extensions and topological properties of the maps. In the fi-
nal section we study finitely generated lattice varieties. We show that canonical
extensions of lattices lying in finitely generated lattice varieties are doubly alge-
braic lattices that are Stone spaces in their Scott and dual Scott topologies. We



also show that canonical extension is functorial on all finitely generated varieties
of lattice-based algebras and that the canonical extensions are Stone topological
algebras in their double Scott topologies.

2 Canonical extension, duality, and relational semantics

A propositional logic is typically specified by a consequence relation on the for-
mulas or compound propositions of the logic. That is, the connectives and their
arities are specified and a set of primitive propositional variables is chosen. The
formulas are then defined inductively by proper application of the connectives.
This already is closely related to algebra as the formulas form the absolutely free
algebra in the type of the connectives over the set of variables. In the syntactic
specification of a logic, a calculus is then given for generating the consequence
relation. In many cases this calculus corresponds to quotienting the free alge-
bra by an equational theory and thus results in a free algebra of a variety. For
example, classical propositional logic corresponds to the variety of Boolean alge-
bras, intuitionistic propositional logic to Heyting algebras, modal logic to modal
algebras, and the Lambek calculus to ordered residuated monoids.

In contrast, semantic conceptions of logic are based on some notion of mod-
els and interpretations of the formulas in these. Thus models of classical logic
are valuations specifying the truth of the primitive propositions, and models of
modal logics are evaluations on Kripke structures. These are objects of a different
nature than formulas and their quotient algebras. This fundamental difference
of sorts becomes very clear when considering the meaning of syntax and se-
mantics in applications: in computer science applications, formulas and their
logical calculi model specification of programs whereas their semantics model
state-based transition systems. Lines of code and states of a machine are objects
of completely different physical sorts. A fundamental question then is how we
can identify the corresponding sort when we are given only one or the other.
That is, given a syntactic specification, what is the corresponding semantics and
vice versa? Going from semantics to syntax may be seen as a significant goal of
coalgebraic logic. In the other direction, mathematics provides a useful tool in
the form of topological duality theory.

Topological duality theory is a fundamental tool of mathematics that allows
one to connect theories or completely different sorts, namely algebra and topol-
ogy. Topological duality, pioneered by Stone, is central in functional analysis, in
algebraic geometry, and also in logic where it is at the base of most completeness
results (in predicate logic as well as in propositional logic). It allows one to build
a dual space from a lattice. In logic applications, the lattice operations are typ-
ically present as they model (some aspect of) conjunction and disjunction but
there are usually other connectives as well. Extended Stone or Priestley duality
is tailored to this setting. For example, the dual space of a Boolean algebra is a
Boolean space, that is, a compact 0-dimensional space, while the dual of a modal
algebra is a Boolean space equipped with a binary relation whose point images
are closed and such that the inverse image of each clopen is clopen (known as



descriptive general frames). In general in extended duality, distributive lattices
with additional operations having some property of preserving or reversing joins
or meets correspond dually to topo-relational spaces where the additional rela-
tions are of arity one higher than the arity of the corresponding operations and
have some basic topological properties.

While this correspondence provided by extended duality is pertinent, one
fundamental difficulty in logic and computer science applications is how to un-
derstand and deal with the topology. There are essentially two solutions to this
problem:

– Simply discard and forget the topology; this is, for example, the approach
in modal logic.

– Restrict to a setting where the topology is fully determined by a first order
structure; this is the case in domain theory where dual spaces carry the Scott
topology which is fully determined by an order.

The second setting recognises topology as having meaning, namely in the form
of observability, but both raise questions about duality: how it relates to the
discrete duality and when a poset is spectral in its Scott topology. We will touch
on both of these in this article.

Canonical extension is most obviously related to the first approach of for-
getting the topology but it is in fact a way, in general, of studying duality in
an algebraic setting. This is useful not only for forgetting the topology but also
for studying additional algebraic structure, that is, extended duality and for
identifying algebraic settings where the topology is order determined.

As mentioned above, at its origin, canonical extension is an algebraic way of
talking about extended Stone duality for Boolean algebras with operators. We
illustrate this with the case of modal algebras [2]. The pertinent square is the
following.
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�O
�O
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algebras

δ

��
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oo
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��
complex
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i
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Here the upper pair of functors gives the extended Stone duality for modal al-
gebras. The dual of a modal algebra is a descriptive general frame (X, τ,R) and
forgetting the topology yields a Kripke frame (X,R). Kripke frames also lie in



the scope of a duality namely the ‘discrete’ duality with complete and atomic
Boolean algebras with a completely join preserving diamond. The canonical ex-
tension is obtained concretely by walking around the square from upper left to
lower left corner. That is, given a modal algebra, A, we take its dual general
descriptive frame, (X, τ,R), forget the topology to get the Kripke frame (X,R),
and then we form the complex algebra, Compl(X,R) = (P(X),3R) where R
and 3R are related by

∀x, y ∈ X R(x, y) ⇐⇒ x 6 3R(y). (1)

Here we identify atoms of P(X) with elements of X . The fact that extended
topological duality is a duality includes the fact that the original modal algebra is
isomorphic to the modal algebra of clopen subsets of (X, τ,R) with the restriction
of the operation 3R. Thus we have, for each modal algebra, an embedding A →֒
Compl(X,R) = Aδ; this embedding is a concrete incarnation of what is known
as the canonical extension. It is clear that to study what happens when we
‘forget the topology’, the canonical extension is central. However, what makes
the canonical extension of general interest are the following two facts:

– The canonical extension may be abstractly characterised as a certain com-
pletion of A in a purely complete lattice theoretic setting;

– We can construct the dual space of A from the canonical extension A →֒ Aδ.

This is why we can claim that the theory of canonical extensions may be seen
as an algebraic formulation of Stone/Priestley duality.

The second of the two above facts is easy to see: Suppose we have somehow
been supplied with ̂ : A →֒ Aδ, how can we reconstruct X , R, and τ from
this algebraic information? First we apply discrete duality to Aδ. That is, we
recover X as the atoms of Aδ and we recover R by using (1). The topology is
generated by the ‘shadows’ of the elements of A on the set X , that is, by the
sets ↓â ∩ At(Aδ) = {x ∈ At(Aδ) | x 6 â} where a ranges over A.

The abstract characterisation of the embedding ̂ : A →֒ Compl(X,R) is
obtained in two tempi. First for the underlying lattice and then for the additional
operations. We will return to the additional operations in Section 4 where we
see they are natural upper- or lower-semicontinuous envelopes. We conclude this
section by proving the three properties of ̂ : A →֒ P(X) which are used in
the abstract definition of canonical extension. To this end, let A be a Boolean
algebra. The Stone space of A is given by

X = {µ ⊆ A | µ is an ultrafilter of A} is the set underlying the space,

B = {â | a ∈ A} is a basis for the topology where â = {µ | a ∈ µ} for a ∈ A.

The fundamental result needed to derive properties of dual spaces is Stone’s
Prime Filter Theorem: If a filter F and an ideal I of a Boolean algebra A are
disjoint then there exists an ultrafilter µ of A containing F and disjoint from I.
Here we use the fact that since A is a Boolean algebra, F ⊆ A is an ultrafilter
iff it is a prime filter. We prove the following three propositions.



Proposition 1. Let A be a Boolean algebra and X the dual space of A. Then
the map

̂ : A→ P(X)

a 7→ â = {µ | a ∈ µ}

is a lattice completion of A.

Proof. It is clear that P(X) is a complete lattice. We have to show that the map
̂ is a lattice embedding. Since ultrafilters are upsets, it is clear that ̂ is order

preserving. Thus â ∧ b ⊆ â ∩ b̂ and â ∪ b̂ ⊆ â ∨ b. Also, if µ ∈ â ∩ b̂ then a ∈ µ
and b ∈ µ and thus a ∧ b ∈ µ since filters are closed under meet. For the join

preservation note that µ ∈ â ∨ b implies that a ∨ b ∈ µ and since ultrafilters are
prime filters, it follows that a ∈ µ or b ∈ µ and thus, in either case, µ ∈ â ∪ b̂.
Finally, if a, b ∈ A with a 6= b then either a 
 b or b 
 a. The former implies
that the filter F = ↑a and the ideal I = ↓b are disjoint. Thus there is a µ ∈ X
with F ⊆ µ and I disjoint from µ. That is, µ ∈ â but µ 6∈ b̂. By symmetry the
same thing happens if b 
 a. ⊓⊔

Proposition 2. Let A be a Boolean algebra and X the dual space of A. Then
the image of the map ̂ : A→ P(X) given by a 7→ â = {µ | a ∈ µ} is

∨∧
- and∧∨

-dense in P(X). That is, every element of P(X) is both an intersection of
unions and a union of intersections of elements in the image of .̂

Proof. This is easily seen by noting that each subset of P(X) is a union of
singletons and for each singleton {µ} we have {µ} =

⋂
{â | a ∈ µ}. The rest

follows by order duality, using De Morgan’s laws. ⊓⊔

Proposition 3. Let A be a Boolean algebra and X the dual space of A. The
map ̂ : A→ P(X) given by a 7→ â = {µ | a ∈ µ} is such that for any subsets S
and T of A with

⋂
{ŝ | s ∈ S} ⊆

⋃
{t̂ | t ∈ T }, there exist finite sets S′ ⊆ S and

T ′ ⊆ T such that
∧
S′ 6

∨
T ′ in A.

Proof. This is a straight forward consequence of Stone’s Prime Filter Theorem:
If the conclusion is false, then the filter generated by S is disjoint from the ideal
generated by T and it follows that there is a prime filter µ ∈ X containing the
filter and disjoint from the ideal. It follows that µ ∈ ŝ for each s ∈ S but µ 6∈ t̂ for
any t ∈ T thus violating the antecedent of the statement of the proposition. ⊓⊔

3 Working with canonical extensions

The philosophy of the canonical extension approach, since its first introduction
by Jónsson and Tarski, and its real power, come from the fact that one can work
with it abstractly without referring to the particular way the canonical extension
has been built, using only a few very simple properties, namely what we will
call completeness, compactness, and density. We work in the setting of arbitrary
bounded lattices.



Definition 1. (canonical extension) Let L be a lattice. A canonical extension
of L is a lattice completion L →֒ Lδ of L with the following two properties:

Density: The image of L is
∨∧

- and
∧∨

-dense in Lδ, that is, every element
of Lδ is both a join of meets and a meet of joins of elements from L;

Compactness: Given any subsets S and T of L with
∧
S 6

∨
T in Lδ, there

exist finite sets S′ ⊆ S and T ′ ⊆ T such that
∧
S′ 6

∨
T ′.

The following equivalent formulations of compactness are often useful and
are not hard to prove.

Proposition 4. (variants of compactness) Let L be a lattice and L′ a complete
lattice. Each of the following conditions on an embedding L →֒ L′ is equivalent
to the compactness property:
(C’) Given any down-directed subset S of L and any up-directed subset T of

L with
∧
S 6

∨
T in L′, there exist s ∈ S and t ∈ T such that s 6 t.

(C”) Given any filter F of L and any ideal I of L with
∧
F 6

∨
I in L′, we

have F ∩ I 6= ∅.

First we consider a few examples.

Example 1. (lattices that are their own canonical extension) Let L be a finite
lattice, or more generally a bounded lattice with no infinite chains. We claim
that the identity L →֒ L is a canonical extension of L. This is a completion of
L because a bounded lattice with no infinite chains is automatically complete;
see, for example, [3], Theorem 2.41. We remark that a poset has no infinite
chains if and only if it satisfies both (ACC) and (DCC) (sufficiency requires the
axiom of choice) and that the reason that this forces completeness of a bounded
lattice is because, in the presence of (ACC), arbitrary non-empty joins reduce
to finite joins, and dually; more details can be found in [3]; see Lemma 2.39
and Theorem 2.40. It is of course clear that the identity is a dense embedding,
and compactness follows because every join and meet reduces to finite ones in a
lattice with (ACC) and (DCC) as remarked above. We note that the converse is
also true. Suppose L →֒ L is a canonical extension and C ⊆ L is a chain in L.
Then a =

∨
C ∈ L must exist (since L must be complete), and by compactness,

there must be c1, . . . , cn ∈ L with a 6 c1 ∨ . . . ∨ cn. Since C is a chain, this
implies there is an i ∈ {1, . . . , n} with c1 ∨ . . . ∨ cn = ci and thus a = ci and L
satisfies (ACC). If the identity on L is a canonical extension then the same is
true for the dual lattice. Thus, by order duality, L also satisfies (DCC) and thus
L has no infinite chains.

Example 2. (canonical extensions of chains). As our next example we consider
the infinite chain L = ω ⊕ ω∂ , where P ∂ denotes the order dual of a poset P .
This lattice L, which is shown in Fig. 1, is the reduct of the MV-chain known
as the Chang algebra. We claim that the embedding of L as a subposet of the
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lattice Lδ as depicted in the figure is a canonical extension of L but that the
embedding of L as a subposet of L is not. It is clear that both L and Lδ are
complete (while L is not). Thus the inclusions L →֒ L and L →֒ Lδ are both
completions of L. Further it is easy to see that both satisfy the density condition.
However, L →֒ L is not compact since

∞∧

i=1

bi = z 6 z =

∞∨

i=1

ci

but no finite meet of bis gets below a finite join of cjs. It is easy to convince
oneself that the embedding L →֒ Lδ is compact. We note that L →֒ L is the
MacNeille completion, i.e., the unique completion of L with the stronger density
property that every element of the completion is obtained both as a join of
elements from L and as a meet of elements from L.

Example 3. (Classical propositional logic example) Let L denote the Lindenbaum-
Tarski algebra of classical propositional logic, or equivalently the free Boolean
algebra, on the countable set of variables X = {x1, x2, . . .}. Also, let Ln be the
classical propositional logic on the set Xn = {x1, x2, . . . , xn}. It is well known

that for each n we have Ln
∼= 22

Xn

. For infinitely many variables this is not so,

however, we will see that the canonical extension of L is the algebra 22
X

. More
precisely, we show that the Boolean homomorphism uniquely determined by the
freeness of L over X and the assignment

L
e
→֒ 22

X

xi 7→ {α ∈ 2X | xi ∈ α }



is a canonical extension of L. By the very definition of e it is a Boolean homo-
morphism. Note that in the finite case

en : Ln → 22
Xn

xi 7→ {α ∈ 2Xn | xi ∈ α }

is the standard isomorphism showing that Ln
∼= 22

Xn

. For each two formulas φ
and ψ there is an n so that φ, ψ ∈ Ln and for φ ∈ Ln we have e(φ)∩2Xn = en(φ)
and thus e is an injection since the en are. Thus e is an embedding.
Next we show that e satisfies the density condition. Since we are dealing with
Boolean algebras and the embedding preserves negation, it is enough to show

that every element of 22
X

may be obtained as a join of meets of elements in the

image of e. Thinking of 22
X

as P(P(X)), it suffices to show that {α} may be
obtained as an intersection of sets in the image of e for each α ∈ P(X). For
α ∈ P(X) let

φn = (
∧

[Xn ∩ α]) ∧ (
∧

{¬x | x ∈ Xn \ α })

where ‘\’ denotes the difference of sets, it is then easy to see that

∞⋂

n=1

e(φn) = {α}.

Finally we show that e is a compact embedding. Let S, T ⊆ L with
⋂
e(S) ⊆⋃

e(T ). Since we are in a power set and e preserves complements, we can rewrite
this as P(X) =

⋃
e(¬S ∪ T ) where ¬S = {¬φ | φ ∈ S }. Thus we just need

to verify the usual topological compactness property. To this end let T be any
subset of L with P(X) =

⋃
e(T ). but assume that no finite subcover of C = e(T )

covers P(X). Since each φ in T may be written as a disjunction of conjunctions of
literals, we may assume without loss of generality that each φ ∈ T is a conjunc-
tion of literals. We define a sequence of literals inductively. Let l1 = x1 if e(x1)
cannot be covered by a finite subcover of C, otherwise let l1 = ¬x1. Note that if
both e(x1) and e(¬x1) can be covered by finite subcovers of C then so can P(X).
Thus l1 is not covered by a finite subcover of C. For each n > 1, if l1, . . . , ln have
been defined, we define ln+1 = l1 ∧ . . . ln ∧ xn+1 if e(l1 ∧ . . . ln ∧ xn+1) cannot be
covered by a finite subcover of C and we let ln+1 = l1 ∧ . . . ln ∧¬xn+1 otherwise.
From our assumption, it is not hard to prove by induction on n that e(

∧n
i=1 li)

cannot be covered by a finite subcover of C. Now let α = { xi | li = xi }. Since
C covers P(X), there is some φ ∈ T with α ∈ e(φ) and thus φ =

∧
i∈I li where

I is a finite set of natural numbers. If I = ∅, then φ = 1 and e(φ) = P(X) is a
singleton subcover of C. Since we are assuming no such cover exists, I 6= ∅. Now
let n = max(I), then

∧n
i=1 li 6 φ and thus e(

∧n
i=1 li) is covered by e(φ) which

is a contradiction. We conclude that C must contain a finite subcover of P(X)
thus proving compactness.
We note that this illustrative example is just a special case of the fact that the



canonical extension of any Boolean algebra is given by the Stone embedding into
the power set of its dual space.

Next we outline the development leading to the uniqueness and existence in
general of canonical extensions of lattices. The density condition that is part of
the abstract definition of canonical extension makes it clear that the meet and
the join closure of L in Lδ play a central role.

Definition 2. (filter and ideal elements) Let L be a lattice, and Lδ a canonical
extension of L. Define

F (Lδ) := { x ∈ Lδ | x is a meet of elements from L },

I(Lδ) := { y ∈ Lδ | y is a join of elements from L }.

We refer to the elements of F (Lδ) as filter elements and to the elements of I(Lδ)
as ideal elements.

The rationale for naming these elements filter and ideal elements, respec-
tively, is made clear by the following proposition.

Proposition 5. Let L be a lattice, and Lδ a canonical extension of L. Then
the poset F (Lδ) of filter elements of Lδ is reverse order isomorphic to the poset
Filt(L) of lattice filters of L and the poset I(Lδ) of ideal elements of Lδ is order
isomorphic to the poset Idl(L) of lattice ideals of L.

Proof. We show the claim for the filters. The isomorphism is given by F (Lδ) →
Filt(L), x 7→ ↑x ∩ L and Filt(L) → F (Lδ), F 7→

∧
F . It is clear that each

x ∈ F (Lδ) satisfies x =
∧
(↑x ∩ L). To show that F = ↑(

∧
F ) ∩ L compactness

is used. ⊓⊔

Note that it is a consequence of compactness that the elements of a canonical
extension that are both filter and ideal elements are exactly the elements of the
original lattice. We call these elements lattice elements.

Proposition 6. Let L be a lattice, and Lδ a canonical extension of L. Then the
order on the subposet F (Lδ) ∪ I(Lδ) of Lδ is uniquely determined by L.

This follows as we can prove, using density and compactness, that the order is
given by

(i) x 6 x′ if and only if Fx′ ⊆ Fx;
(ii) x 6 y if and only if Fx ∩ Iy 6= ∅;
(iii) y 6 x if and only if a ∈ Iy, b ∈ Fx implies a 6 b;
(iv) y 6 y′ if and only if Iy ⊆ Iy′ .

Here x, x′ stand for elements in F (Lδ); Fx, Fx′ for the corresponding filters and
y, y′ stand for elements in I(Lδ); Iy , Iy′ for the corresponding ideals.

Now the uniqueness of the canonical extension follows modulo the well-known
abstract characterisation of MacNeille completion.



Theorem 1. (uniqueness of canonical extensions) Let L be a lattice. Then the
canonical extension of L is unique up to an isomorphism fixing L.

Proof. It is clear from the above proposition that for any canonical extension
L →֒ L′ of L, the poset Int(L′) = F (L′) ∪ I(L′) is uniquely determined. The
MacNeille completion of a poset is the unique completion in which the original
poset is both join-dense and meet-dense. The density condition for canonical
extensions tells us that Int(L′) is both join-dense (because of the filter elements)
and meet-dense (because of the ideal elements) in L′ and thus L′ is uniquely
determined as the MacNeille completion of Int(L′). ⊓⊔

Note that this uniqueness proof also provides a key to existence: one can
build the canonical extension of any lattice by taking the MacNeille completion
of the amalgam of the ideal lattice and the order dual of the filter lattice of L
according to the four conditions given above. This construction has the virtue
of not using the axiom of choice. However, by uniqueness, it will produce the
embedding of L into the dense completion defined by its dual space whenever
the latter exists.

Remarkably, even in the non-distributive case, the canonical extension of a
lattice satisfies a restricted complete distributivity condition. We do not give the
straight forward proof which may be found in [4].

Proposition 7. (restricted distributivity for canonical extensions) Let L be a
bounded lattice and Y a family of down-directed subsets of L, viewed as a family
of subsets of the canonical extension Lδ of L. Then Y satisfies the complete∨∧

-distributive law. Dually, if Y is a family of up-directed subsets of L then
Y satisfies the

∧∨
-distributive law relative to Lδ. Here Y is said to satisfy the

complete
∨∧

-distributive law provided

∨
{
∧
Y | Y ∈ Y } =

∧
{
∨
Z | Z ∈ Y♯ }

where Y♯ = {Z ⊆ L | Y ∩ Z 6= ∅ for all Y ∈ Y } and the
∧∨

-distributive law is
defined order dually.

From this one can show that the canonical extension of a distributive lattice
is distributive and, using the axiom of choice, that it is completely distributive.
Using the axiom of choice one can also show that the canonical extension of any
lattice is join generated by the set J∞(Lδ) of completely join irreducible elements
of the canonical extension. In the distributive setting, these of course correspond
to the prime filters of the original lattice and we get that Lδ is isomorphic to
the upset lattice of J∞(Lδ). By symmetry, the order dual statements hold about
the collection of completely meet irreducible elements of Lδ, M∞(Lδ).

Given that canonical extensions satisfy some directed infinite distributivity
conditions, it is natural to wonder whether they must always be continuous
lattices. For distributive lattices this is true but it is not the case in general.
We give an example here of a canonical extension that is not meet-continuous
and thus, as it is a complete lattice, not a continuous lattice, see [9, Proposition
I-1.8, p.56].



Example 4. (A canonical extension that is not continuous) Let

L = {0, 1} ∪ {aij | i, j ∈ N}

where 0 is the bottom, 1 is the top, and

aij > akl ⇐⇒ (i+ j 6 k + l and i > k).

This lattice, see Figure 2, is non-distributive as, e.g., 1, a20, a11, a00, a02 form
a copy of the lattice N5. L satisfies ACC and thus the intermediate structure
is isomorphic to the filter completion of L which is obtained by adding filter
elements xi, i ∈ N with xi 6 aij for all i and j (and then xi 6 xk whenever
i 6 k). The resulting structure is complete and is thus the canonical extension of
L. To see that Lδ is not meet-continuous note that a00∧(

∨∞

i=0 xi) = a00∧1 = a00
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Fig. 2. Non-continuous canonical extension

while
∨∞

i=0(a00 ∧ xi) =
∨∞

i=0 x0 = x0.

4 Morphisms, maps, and additional operations

In domain theory maps are extended using directed join density. In canonical
extensions the original lattice may be neither meet nor join dense but two lay-
ers of joins and meets are needed. However, by introducing a topology we can



translate this to a topological setting in which the original lattice is topologically
dense in the canonical extension.

Definition 3. Let L be a lattice. We denote by δ, δ↑ and δ↓ the topologies on
Lδ having as bases, respectively, the sets of the forms ↑x∩↓y = [x, y], ↑x = [x, 1]
and ↓y = [0, y], with x ∈ F (Lδ) and y ∈ I(Lδ).

We will denote the interval topology on any poset by ι and its one-sided
parts, the upper topology and the lower topology, by ι↑ and ι↓, respectively.
Further, we denote the Scott topology by σ↑, the dual Scott topology by σ↓,
and the double Scott topology by σ. We have the following basic facts about the
topology δ.

Theorem 2. Let L be lattice. The δ-topologies are refinements of the σ-topologies
and thus also of the ι-topologies and the space (Lδ, δ) is Hausdorff. The set L
is dense in (Lδ, δ) and the elements of L are exactly the isolated points of the
space.

Proof. Since the filter elements of a canonical extension join-generate it, by di-
rected joins, it is clear that σ↑ ⊆ δ↑ and by order duality σ↓ ⊆ δ↓ and thus
also σ ⊆ δ. To see that δ is Hausdorff, let u, v ∈ L with u 
 v, then there is
x ∈ F (Lδ) with x 6 u but x 
 v. Now since x 
 v there is y ∈ I(Lδ) with v 6 y
but x 
 y. That is, ↑x and ↓y are disjoint δ open sets separating u and v. The
set A is dense in Lδ since each non-empty basic intervals [x, y] contains a lattice
element by compactness. Finally, for a ∈ L, the interval [a, a] = {a} is open, and
a is therefore isolated. On the other hand, since L is dense in (Lδ, δ), it follows
that if {u} is open then u ∈ L. ⊓⊔

Further basic facts about this topology are that it is stable under order
duality and that it commutes with Cartesian product (i.e. is productive). We
note also that if L is distributive, then Lδ is a Priestley space in its interval
topology which is also equal to the double Scott topology and is generated by
the complementary pairs ↑p, ↓κ(p), with p ∈ J∞(Lδ) and κ(p) ∈M∞(Lδ) given
by p 6 u iff u 
 κ(p) for u ∈ Lδ. In fact, the topology generated by upsets of
elements of J∞(Lδ) and downsets of elements ofM∞(Lδ) also plays an important
role in the theory of canonical extensions in general [5].

In defining and investigating extensions of maps f : K → L between lattices
to maps between their canonical extensions, we make use of the various topologies
on Kδ and Lδ. Since several topologies have been defined on each set, it is often
necessary to specify which ones are under consideration. In general, if τ and µ
are topologies on the sets X and Y , and if the map f : X → Y is continuous
relative to τ on X and µ on Y , then we write that f is (τ, µ)-continuous.



Definition 4. Let L be a lattice and C a complete lattice. For any map f : L→
C, and for all u ∈ Lδ, we define

fσ(u) = limδf(u) =
∨

{
∧
f(U ∩ L) | u ∈ U ∈ δ}

=
∨

{
∧
f([x, y] ∩ L) | F (Lδ) ∋ x 6 u 6 y ∈ I(Lδ)},

fπ(u) = limδf(u) =
∧

{
∨
f(U ∩ L) | u ∈ U ∈ δ}

=
∧

{
∨
f([x, y] ∩ L) | F (Lδ) ∋ x 6 u 6 y ∈ I(Lδ)}.

In particular, for maps f : L → M between lattices, we define fσ and fπ by
considering the composition of f with the embedding of M in M δ.

Note that, as each point of L is isolated in the δ-topology it follows that
both of the functions defined above are extensions of f , that is, agree with f on
L. Also, as the δ topology commutes with products, the lifting of operations is
just a special case of lifting of maps. This is of course the well-known upper and
lower envelope constructions from topology and, under some restrictions, they
are, respectively, the largest (δ, ι↑)-continuous function that is below f on L and
the least (δ, ι↓)-continuous function that is above f on L. A careful analysis of
when this works is in the second author’s Ph.D. thesis [12]. Here we record the
following facts.

Proposition 8. Let f : L→M be a map between lattices. Then fσ : Lδ →M δ

is (δ, σ↑)-continuous and thus also (δ, ι↑)-continuous. Furthermore,

1. If f is order preserving or reversing, then fσ is the largest (δ, ι↑)-continuous
function that is below f on L;

2. If σ↑ has a basis of principal up-sets, i.e. if M δ is algebraic, then fσ is the
largest (δ, σ↑)-continuous function that is below f on L.

Dual statements hold about fπ.

When the envelopes are the largest (δ, ι↑)-continuous functions above, respec-
tively smallest (δ, ι↓)-continuous functions below, the original function we will
say that the envelopes of f are universal. This is the case, by (1), for operations
that are monotone (that is, order preserving or reversing in each coordinate).
We shall see, in the next section, that on canonical extensions of lattices lying
in finitely generated varieties, the Scott topology is equal to the upper topology
and has a basis of principal up-sets so that the envelopes are universal for any
mapping between lattices lying in finitely generated lattice varieties.

We give a few examples of extensions of maps.

Example 5. (of the σ- and π-extensions of a modal operator) The following is a
notorious example from modal logic. It illustrates that modal axioms may fail to
be preserved by canonical extension. Let B be the Boolean algebra of finite and
co-finite subsets of N and consider the relation > on N. The Boolean algebra B



is closed under the operation 3(S) = {n | ∃m (n > m and m ∈ S} since it gives
↑(min(S) + 1) for any non-empty set S. It is straight forward to check that the
modal algebra (B,3) satisfies the Gödel-Löb axiom:

3(¬3a ∧ a) > 3a.

It is clearly true for ∅ since 3∅ = ∅. For any non-empty set S, we have 3(S) =
↑(min(S)+1) and thus the complement contains min(S) and we get 3(¬3(S)∧
S) = 3(S). The canonical extension of B is easily seen to be the powerset of
N∞ = N∪ {∞} with the embedding of B into P(N∞) which sends each finite
subset of N to itself and each co-finite subset of N to its union with {∞}. Thus
the singleton {∞} is the filter element which is the meet of all the co-finite
elements of B. We have

3
σ({∞}) =

⋂
{3(S) | S is co-finite}.

Since 3(S) for a co-finite set can be ↑n for any n ∈ N it follows that 3σ({∞}) =
{∞} and thus 3(¬3{∞} ∧ {∞}) = ∅ � 3{∞}.

A map f between lattices is called smooth provided its σ- and π-extensions
are equal. In this case we denote the extension by f δ to stress its order-symmetry.

Example 6. (of a non-smooth operation) LetX be an infinite set and let B be the
Boolean algebra of all subsets of X which are either finite or co-finite. Consider
the map f : B2 → B defined by f(b1, b2) = 0B = ∅ if b1 and b2 are disjoint and
f(b1, b2) = 1B = X otherwise. As in the above example, the canonical extension
of B is the powerset of X∞ = X ∪ {∞} where ∞ 6∈ X with the embedding
of B into P(X∞) which sends each finite subset of X to itself and each co-finite
subset of X to its union with {∞}.

Let u ∈ Bδ = P(X∞) be a subset of X that is neither finite nor co-finite.
We claim that fσ(u,¬u) = 0 whereas fπ(u,¬u) = 1.

fσ(u,¬u) =
∨

{
∧
f([ s, t ] ∩B2) | F ((B2)δ) ∋ s 6 (u,¬u) 6 t ∈ I((B2)δ)}

Note that canonical extension commutes with product so that (B2)δ = (Bδ)2,
F ((B2)δ) = (F (Bδ))2, and I((B2)δ) = (I(Bδ))2. Now pick s = (s1, s2) ∈
(F (Bδ))2 and t = (t1, t2) ∈ (I(Bδ))2 with s 6 (u,¬u) 6 t. It is not hard to
verify that s ∈ Bδ = P(X∞) is a filter element if and only if it is finite or
contains ∞. By choice of u we have ∞ /∈ u and thus ∞ /∈ s1 6 u and s1 must
be a finite subset of X . That is, s1 ∈ [s1, t1] ∩ B is a finite subset of u. Now
s2 6 ¬u 6 ¬s1 ∈ B and it follows by compactness that there is b2 ∈ B with
s2 6 b2 6 ¬s1 ∧ t2 6 t2. Since s1 and ¬s1 are disjoint, so are s1 and b2 and
we have f(s1, b2) = 0. Also (s1, b2) ∈ [ s, t ] ∩ B2 so

∧
f( [s, t ] ∩ B2) = 0 and

fσ(u,¬u) = 0 as claimed.
Now consider

fπ(u,¬u) =
∧

{
∨
f([ s, t ] ∩B2) | F ((B2)δ) ∋ s 6 (u,¬u) 6 t ∈ I((B2)δ)}



and pick s = (s1, s2) ∈ (F (Bδ))2 and t = (t1, t2) ∈ (I(Bδ))2 with s 6 (u,¬u) 6
t. We have ¬u 6 t2 ∈ I(Bδ). Now, an element t ∈ Bδ = P(X∞) is an ideal
element if and only if t is co-finite or doesn’t contain ∞. By choice of u we
have ∞ ∈ ¬u so that ∞ ∈ t2 and thus t2 must be co-finite. It follows that
t2 ∈ [s2, t2] ∩ B. Since u is not finite, u ∧ t2 6= 0. Let b ∈ B be any finite non-
empty subset of u ∧ t2. Then b 6 u 6 t1 and by an argument similar to the one
above, we obtain a b1 ∈ B with s1 6 s1 ∨ b 6 b1 6 t1. Now (b1, t2) ∈ [ s, t ] ∩B2

and 0 6= b 6 b1 ∧ t2 so that f(b1, t2) = 1. It follows that fπ(u,¬u) = 1.

The fact that the universal properties of the upper and lower extensions of
a map are asymmetric with respect to the topology used on the domain and
codomain has as consequence that, in total generality, extensions do not com-
mute with composition [8, Ex.2.34] so that canonical extension isn’t functorial
when considering arbitrary set maps between lattices. The paper [8] analysed
the situation in detail and in [4] some of the results were generalised to the lat-
tice setting. A simple general fact encompassing most applications in logic is:
canonical extension is functorial for homomophisms of algebras that are lattices
with additional basic operations each of which is order-preserving or -reversing
in each of its coordinates (such algebras are called monotone lattice expansions).

Preservation of identities when moving to the canonical extension is also
closely tied to compositionality of the extension of maps and, as explained in
detail in [8], compositionality results can in many cases be inferred by an analysis
of the topological properties of the extensions of maps with particular properties.
Examples are given in the following theorem.

Theorem 3. Let K,L,M,N be lattices, h : K → L a lattice homomorphism,
and f :M → N a map with universal envelopes. Then the following hold:

1. If f has a (δ, ι)-continuous extension, f̃ : M δ → N δ, then f is smooth and
f δ = f̃ .

2. h is smooth and hδ : Kδ → Lδ is a complete homomorphism and is both
(δ, δ)- and (ι, ι)-continuous;

3. If N = K then (hf)σ = hσfσ;
4. If L =M and h is surjective then (fh)σ = fσhσ

5. If M = M1 × . . . ×Mn and f preserves joins in each coordinate (i.e., f is
an operator) and M is distributive, then fσ is (ι↑, ι↑)-continuous.

Proof. The facts (1),(3) and (4) are proved for distributive lattices in [8, Cor.2.17],
[8, Lem.3.3], and [8, Lem.3.6], respectively, and an inspection of the proofs read-
ily shows that they are still valid in the lattice setting.

The fact that lattice homomorphisms are smooth and lift to complete lattice
homomorphisms is proved in [4]. The fact that hδ is (δ, δ)-continuous is proved
for distributive lattices in [8, Thm.2.24(iii),(iv)] and an inspection of the proof
readily shows that it is true in the lattice setting as well. The (ι, ι)-continuity is
another matter (see (4) below). Let v ∈ Lδ. For each u ∈ Kδ, we have

hδ(u) 6 v ⇐⇒ u 6 (hδ)♯(v)



where (hδ)♯ is the upper adjoint of hδ. Thus the same holds for the negation of
these inequalities, i.e. (hδ)−1((↓v)c) = (↓(hδ)♯(v))c, where ( )c denotes comple-
ment, and thus hδ is (ι↑, ι↑)-continuous. By symmetry hδ is (ι↓, ι↓)-continuous.

The proof of (4), which is the cornerstone of the paper [6], relies on the fact
that ι↑ is generated by {↑p | p ∈ J∞(Lδ)} in the distributive setting, see e.g. [6,
Lem.4.2]. ⊓⊔

We now illustrate the use of these tools by proving the following propositions.
Note that it is not specified in the following propositions whether we are using
the σ- or the π-extension in taking the canonical extensions of the additional
operations. The point is that the results hold in either case.

Proposition 9. Let (A, f) and (B, g) be lattices with additional n-ary operation
with universal envelopes, and let h : (A, f) → (B, g) be a homomorphism. If g is
smooth then h lifts to a homomorphism between the canonical extensions.

Proof. Since h : (A, f) → (B, g) is a homomorphism, we have hf = gh[n]

and thus (hf)σ = (gh[n])σ. Now (hf)σ = hσ(f)σ by Theorem 3(3). Note that
gδ(h[n])δ is (δ, ι)-continuous since (h[n])δ is (δ, δ)-continuous by Theorem 3(2)
and gδ is (δ, ι)-continuous by hypothesis. Also, gδ(h[n])δ is an extension of
gh[n] so by Theorem 3(1), we have (gh[n])σ = (gh[n])π = gδ(h[n])δ. That is,
hδ(f)σ = gδ(h[n])δ and the homomorphism lifts. ⊓⊔

Lemma 1. Let A and B be lattices and h : A։ B a surjective homomorphism.
Then hδ : Aδ ։ Bδ is a (δ, δ)-open mapping.

Proof. Note first that surjective morphisms lift to surjective morphisms [4]. If
x and y are filter and ideal elements in Aδ, respectively, then clearly hδ(x) and
hδ(y) are filter and ideal elements in Bδ since hδ preserves arbitrary meets and
joins. Also, using the fact that hδ is surjective, it is straight forward to check
that hδ([x, y]) = [hδ(x), hδ(y)] (for this note that if hδ(x) 6 hδ(u) 6 hδ(y) then
hδ(x) 6 hδ((u∨x)∧ y) 6 hδ(y) and x 6 (u∨ x)∧ y 6 y). Now the result follows
as forward image always preserves union. ⊓⊔

Proposition 10. Let (A, f) and (B, g) be lattices with additional n-ary oper-
ation with universal envelopes, and let h : (A, f) ։ (B, g) a surjective homo-
morphism. If f is smooth then so is g. If the extension of f is (ι, ι)-continuous
and hδ sends ι-open hδ-preimages to ι-opens, then the extension of g is also
(ι, ι)-continuous.

Proof. Note that h lifts to a homomorphism of the canonical extensions by The-
orem 3 parts (3) and (4). Let U be ι-open in Bδ. Then (hδ ◦ fσ)−1(U) is δ-open
in (Aδ)n since fσ is (δ, ι)-continuous by assumption and hδ is (ι, ι)-continuous by
Theorem 3(2). Now hδ ◦ fσ = gσ ◦ (hδ)[n] since h lifts to a homomorphism of the
canonical extensions. It follows that (gσ ◦(hδ)[n])−1(U) = ((hδ)[n])−1◦(gσ)−1(U)
is δ-open in (Aδ)n. We now use the lemma to conclude that the lifting (hδ)[n] =
(h[n])δ of the surjective homomorphism h[n] : An ։ Bn which is obtained by
doing h in each coordinate, is a (δ, δ)-open mapping. We thus conclude that



(hδ)[n](((hδ)[n])−1 ◦ (gσ)−1(U)) is δ-open in (Bδ)n. Finally note that, as (hδ)[n]

is surjective, (hδ)[n](((hδ)[n])−1(S)) = S for any subset of (Bδ)n. We conclude
that (gσ)−1(U) is δ-open in (Bδ)n and thus g is smooth.

For the statement on (ι, ι)-continuity, note that the openness of the map
(hδ)[n] in the proof above is only needed on (hδ)[n]-saturated opens and this
is a consequence of the corresponding statement for hδ. Thus, with the given
assumptions, the same proof goes through for the (ι, ι)-continuity. ⊓⊔

A class of similar lattices with additional operations is called a class of lattice
expansions.

Corollary 1. Let K be a class of lattice expansions for which the envelopes of
the basic operations are universal. The operator H, taking homomorphic images
of algebras, preserves smoothness.

5 Canonical extensions in finitely generated varieties

In this final section we illustrate the theory by giving a few consequences for
lattice expansions that lie within finitely generated varieties, varieties generated
by a finite collection of finite algebras. These are simple consequences, mainly
of the results in [8] and [4] but have not been published yet. The main result of
[8] (first published in [7]) has as consequence that all finitely generated varieties
of bounded distributive lattice expansions are canonical and in [4] it was shown
that this result goes through to finitely generated monotone bounded lattice
varieties.

These results are based on two facts. First, the observation (also behind the
famous Jónsson Lemma of universal algebra) that any product of lattice expan-
sions is isomorphic to a Boolean product of all the ultraproducts formed from
the given product. And secondly, the following result which is central in [7] and
[8] in its distributive lattice incarnation and is central in [4] in its general form
for arbitrary bounded lattices. We give the simple proof for arbitrary bounded
lattices here for completeness.

Theorem 4. (Canonical extensions of Boolean products) Let (Lx)x∈X be a fam-
ily of bounded lattices. If L 6

∏
X Lx is a Boolean product, then Lδ =

∏
X Lδ

x.

Proof. We first show that the inclusion of L into
∏

X Lδ
x given by the composition

of the inclusion of L into
∏

X Lx followed by the coordinate-wise embedding of∏
X Lx into

∏
X Lδ

x yields a canonical extension. As each Lδ
x is complete, the

product
∏

X Lδ
x is a complete lattice. Suppose x ∈ X and p ∈ Lδ

x is a filter
element. Define ux,p ∈

∏
X Lδ

x by setting ux,p(x) = p and ux,p(y) = 0 for y 6= x.
We first show that ux,p is a meet in

∏
X Lδ

x of elements from L. It then follows
that every element of

∏
X Lδ

x is a join of meets of elements of L, and by a dual
argument, a meet of joins of elements of L.

To show that ux,p is a meet of elements of L, note first that p is a meet in Lδ
x

of a family S of elements of Lx. As L 6
∏

X Lx is subdirect, for each s ∈ S there
is some us ∈ L with us(x) = s. Using the Patching Property, for each clopen



neighbourhood N of x, and each s ∈ S, we have us|N ∪ 0|N c is an element of L.
Then, the meet of

{ (us|N ∪ 0|N c) | s ∈ S, x ∈ N clopen }

is equal to ux,p. This shows that the inclusion of L into
∏

X Lδ
x is dense.

Finally we show that the inclusion of L into
∏

X Lδ
x is compact. Suppose

that S is a filter of L, T is an ideal of L, and
∧
S 6

∨
T . For each x ∈ X let

Sx = { u(x) | u ∈ S } and let Tx = { v(x) | v ∈ T }. Then
∧
Sx 6

∨
Tx for each

x ∈ X . As Lδ
x is a canonical extension of Lx, Sx∩Tx 6= ∅, hence there are ux ∈ S

and vx ∈ T with ux(x) = vx(x). As equalisers in a Boolean product are clopen,
ux and vx agree on some clopen neighbourhood Nx of x. Then, as X is compact,
and {Nx | x ∈ X } is an open cover of X , there is a finite family x1, . . . , xn
with Nx1

, . . . , Nxn
a cover of X . We assume, without loss of generality, that

Nx1
, . . . , Nxn

are pairwise disjoint. Let w be the function which agrees with uxi
,

hence also with vxi
, on Ni for i = 1, . . . , n. By the Patching Property, w is an

element of L. Also, w is the join of the n functions agreeing with uxi
on Nxi

and defined to be 0 elsewhere, hence w is in the ideal S. Similarly w is the meet
of the n functions agreeing with vxi

on Nxi
and 1 elsewhere, hence w is in the

filter T . Thus, S ∩ T 6= ∅. This shows that the inclusion of L into
∏

X Lδ
x is

compact. ⊓⊔

It is a fundamental universal algebraic fact that if a class K generates the
variety V , then V = HSP (K) where H,S, P are the operators closing a class un-
der homomorphic images, subalgebras, and products, respectively. By the above
mentioned observation, P (K) = PBPµ(K) where PB and Pµ are the operators
closing a class under Boolean products and ultraproducts, respectively. Since an
ultraproduct of a single finite structure is always isomorphic to the structure
itself, it follows that for a finite lattice expansion A, V(A) = HSPB(A). Many
theorems, including the main canonicity theorems of [8,4] are proved by showing
that H , S, and PB all three preserve canonicity. These three operators preserve
many other nice properties and that is what we want to illustrate here.

We start with a somewhat technical proposition drawing on work in domain
theory. The conclusion of the proposition identifies what is at stake here. An
upper, respectively lower, tooth in a poset is the upset, respectively downset, of
a finite subset. A perfect lattice is a complete lattice in which the completely join
irreducibles are join-dense and the completely meet irreducibles are meet-dense.

Proposition 11. Let C be a perfect lattice with the following properties:

(⋆) ∀p ∈ J∞(C) (↑p)c = ↓Mp where Mp ⊆M∞(C) is finite;

(⋆)∂ ∀m ∈M∞(C) (↓m)c = ↑Jm where Jm ⊆ J∞(C) is finite.

Then C is doubly algebraic and the Scott and the upper topologies on C are equal
and this topology is spectral. Dually, the dual Scott and the lower topologies on
C are equal and this topology is spectral as well. The bases of compact-opens of
these two topologies come in complementary pairs of upper and lower teeth and
the join of the two topologies makes C into a Priestley space.



Proof. We first show that C is algebraic. Denote the finite join closure of J∞(C)
by J∞

ω (C) and the finite meet closure of M∞(C) by M∞
ω (C) and note that if

(⋆) and (⋆)∂ hold for elements in J∞(C) and M∞(C) then they also hold for
elements of J∞

ω (C) and M∞
ω (C) since, e.g.,

∨n
i=1 pi 
 u if and only if pi 
 u for

some i with 1 6 i 6 n. We will now show that each k ∈ J∞
ω (C) is compact in C.

Let U ⊆ (↑k)c be directed. Then for each u ∈ U there is m ∈ Mk with u 6 m.
We claim that in fact there is a single m ∈Mk with U 6 m. To see this, suppose
that for each m ∈ Mk there is a um ∈ U with um 
 m. Since U is directed,
there is u ∈ U that is above each element of the finite subset {um | m ∈ Mk}
of U . But then u 
 m for each m ∈ Mk which is a in contradiction with our
assumptions. Note that this is a general argument showing that if a directed set
is contained in a lower tooth then it is below one of the generators of the tooth.
Now U 6 m implies

∨
U 6 m so that

∨
U 6= k and ↑k is compact. Further, as

C is perfect, for each u ∈ C

u =
∨

{p ∈ J∞(C) | p 6 u}

=
∨

{k ∈ J∞
ω (C) | k 6 u}

where the second join is directed and thus C is algebraic. As a consequence the
Scott topology as well as the lower topology are spectral. We now show that
the Scott topology is equal to the upper topology. It is always the case that the
Scott topology contains the upper topology. Let U be Scott open and let u ∈ U .
Then, as u is the directed join of {k ∈ J∞

ω (C) | k 6 u}, there is a k ∈ J∞
ω (C)

with u > k ∈ U , or equivalently, u ∈ ↑k ⊆ U . As (↑k)c = ↓Mk =
⋃

m∈Mk
↓m

we have ↑k =
⋂

m∈Mk
(↓m)c which is open in the interval topology since Mk is

finite. Thus U is the union of sets that are open in the interval topology and we
conclude that the two topologies agree. The rest follows by order duality. ⊓⊔

We will show that the canonical extension of any lattice lying in a finitely
generated variety satisfies the hypothesis of the above proposition – and thus
also its conclusion. This shows that working in lattice expansions based on lat-
tices lying in finitely generated varieties of lattices essentially brings about the
same advantages as working on distributive lattice expansions (for which the
underlying lattice lies in the lattice variety generated by the two element lat-
tice). As explained above, the strategy in proving this is to show that any finite
lattice A satisfies the hypothesis of the proposition and then move through the
operators PB , S,H . First note that the canonical extension of any lattice is a
perfect lattice so we just need to prove that the conditions (⋆) and (⋆)∂ hold.
Also, it is clear that any finite lattice satisfies the conditions. The only detail
that may be worth comment is the observation that, in any lattice, an element
m which is maximal with respect to not being greater than or equal to some
other element k necessarily must be completely meet irreducible since m < a
implies k 6 a.

Lemma 2. Let A be a finite lattice, B ∈ PB(A). Then Bδ satisfies the condi-
tions (⋆) and (⋆)∂ .



Proof. By Theorem 4 we have Bδ = AX and it is straight forward to verify
that J∞(AX) = {π♭

x(p) | x ∈ X and p ∈ J(A)} and M∞(AX) = {π♯
x(m) | x ∈

X and m ∈ M(A)}. The condition (⋆) clearly holds since, for each x ∈ X and
p ∈ J(A) the set (↑π♭

x(p))
c ∩M∞(AX) = {π♯

x(m) | p 
 m ∈ M(A)} which is
finite. By order duality (⋆)∂ holds as well. ⊓⊔

Lemma 3. Let A be a finite lattice, C ∈ S(PB(A)). Then C
δ satisfies the con-

ditions (⋆) and (⋆)∂ .

Proof. If C ∈ S(PB(A)) then C →֒ B →֒ AX where the second embedding
is a Boolean product. Consequently Cδ →֒ Bδ = AX where the embedding
is a complete lattice embedding. That is, we may assume that D := Cδ is a
perfect lattice which is a complete sublattice of AX . Now let x ∈ X . Note that
πx(D) is a sublattice of the finite lattice A. Consider the restricted projection
πx↾D : D → πx(D). It is a complete lattice homomorphism and has right and
left adjoints. We claim that

J∞(D) = {(πx↾D)♭(p) | x ∈ X, p ∈ J(πx(D))}

M∞(D) = {(πx↾D)♯(m) | x ∈ X,m ∈M(πx(D))}.

We first show that (πx↾D)♭(p) is completely join irreducible in D for each x ∈ X
and p ∈ J(πx(D)). To this end, let E ⊆ D with e < (πx↾D)♭(p) for each e ∈ E .
Thus at least ex 6 ((πx↾D)♭(p))x = p. However, if ex = p then p 6 ex and thus
(πx↾D)♭(p) 6 e which is not the case. So in fact, ex < p for each e ∈ E . Since
p ∈ J(πx(D)) = J∞(πx(D)) it follows that (

∨
E)x =

∨
{ex | e ∈ E} < p and

thus
∨
E 6= (πx↾D)♭(p) so that the latter has been proved to be completely join

irreducible. Since ((πx↾D)♭(p))x = p it is clear that for each d ∈ D we have

d =
∨

{(πx↾D)♭(p) | x ∈ X, p ∈ J(πx(D)), p 6 dx}

so that the (πx↾D)♭(p) must account for all the completely join irreducibles in
D. The statement about completely meet irreducibles follows by order duality.
Finally, let x ∈ X , p ∈ J(πx(D)), and d ∈ D, then

(πx↾D)♭(p) 
 d ⇐⇒ p 
 dx

⇐⇒ dx ∈ ↓Mp

⇐⇒ d ∈ ↓{(πx↾D)♯(m) | m ∈Mp}

where Mp is the set of maximal elements of (↑p)c in πx(D)). Thus (⋆) holds
and by order duality (⋆)∂ also holds and we have proved the lemma. ⊓⊔

Lemma 4. Let D be a complete lattice satisfying the conditions (⋆). Further,
let E be a complete homomorphic image of D. Then E also satisfies (⋆). The
same holds for (⋆)∂ .



Proof. Let D and E be complete lattices, h : D ։ E a surjective complete
lattice homomorphism. Further, let q ∈ J∞(E) and e ∈ E with q 
 e. Since h is
completely meet preserving it has a lower adjoint h♭ : E → D given by

∀e ∈ E ∀d ∈ D (h♭(e) 6 d ⇐⇒ e 6 h(d))

As h is surjective it is not hard to see that h♭ carries completely join irreducible
elements to completely join irreducible elements. Thus h♭(q) ∈ J∞(D) and it
follows by (⋆) that (↑h♭(q))c = ↓M for some finite subset M of M∞(D). Sur-
jectivity of h also implies that there is d ∈ D with h(d) = e and q 
 e = h(d)
implies h♭(q) 
 d by the adjunction property. Thus there is an m ∈ M with
d 6 m. Since h is order preserving then e = h(d) 6 h(m) so that (↑q)c = ↓h(M).
The set h(M) is finite and thus each element of h(M) is below a maximal one
and we have (↑q)c = ↓max(h(M)). Since the elements of max(h(M)) are also
maximal in (↑q)c they are necessarily completely meet irreducible. The hypothe-
ses are self dual so clearly, the dual condition (⋆)∂ is also preserved. ⊓⊔

Remark 1. Let A be a finite lattice and let n be such that

∀B ∈ S(A) ∀p ∈ J(B) |max((↑p)c)| 6 n

(such an n exists since A is finite and only has finitely many subalgebras) then

∀E ∈ HSPB(A) = V(A) ∀p ∈ J∞(Eδ) |max((↑p)c)| 6 n.

This follows easily by looking at the proofs of the three lemmas.
Note also that if we start from any class K of finite lattices (not necessarily of

bounded size) our lemmas still go through, so the algebras in HSPB(K) satisfy
(⋆) and (⋆)∂ and thus also the conclusion of Proposition 11. This class is of
course not necessarily a variety.

We reiterate what we have achieved:

Theorem 5. Let A be a finite lattice and let E ∈ V(A) then Eδ is doubly alge-
braic and the Scott and the upper topologies on Eδ are equal and this topology is
spectral. Dually, the dual Scott and the lower topologies on Eδ are equal and this
topology is spectral as well. The bases of compact-opens of these two topologies
come in complementary pairs of upper and lower teeth and the join of the two
topologies makes C into a Priestley space.

Using the above result, we can prove the following result which is closely
related to the result in [10]. Note though that we do not need the restriction to
monotone additional operations. The connection between canonical extension,
profinite completion and topology is studied in further detail in [12].

Theorem 6. Canonical extension is functorial on any finitely generated variety
of lattice expansions and the canonical extension of all operations are continuous
in the interval(=double Scott) topology. This implies that all basic operations on
all the algebras in such a variety are smooth and that all the canonical extensions
are Stone topological algebras in their interval(=double Scott) topologies.



Proof. Note first that by the above result combined with Proposition 8(2) the
envelopes of any maps between lattices lying in finitely generated varieties are
universal so that the results of the previous section may be applied. Our strategy
is then to show, at each level of generation (through PB , S andH), that the addi-
tional operation lifts to an (ι, ι)-continuous map. It then follows by Proposition 9
that homomorphisms lift to the canonical extensions and thus that canonical ex-
tension is functorial on finitely generated varieties.

Let A be a finite lattice, and let B 6 AX be a Boolean product. Without
loss of generality, we consider just one basic operation f : An → A on A. We
know that Bδ = AX . Also, since the interval topology on bounded lattices is
productive [1] and A is finite, the interval topology on AX is simply the product
topology for A with the discrete topology. Clearly then the map f [X] which is
just f coordinate-wise is interval continuous and extends fB since this map is
coordinate-wise f as well. By Theorem 3(1), it follows that fB is smooth and
that (fB)δ is equal to f [X].

Now let C be in S(PB((A, f)). Then (C, fC) →֒ (B, fB) 6 (AX , f [X]) where
the latter is a Boolean product and thus D := Cδ is a complete sublattice of
Bδ = AX . By Theorem 5, the upper topology, ι↑, on AX is generated by the
subbasis consisting of the sets ↑π♭

x(p) for x ∈ X and p ∈ J(A) whereas the
upper topology on D = Cδ is generated by the subbasis consisting of the sets
↑D(πx↾D)♭(q) for x ∈ X and q ∈ J(πx(D)). Note that for x ∈ X and p ∈ J(A)
we have

↑π♭
x(p) ∩D = ↑D(πx↾D)♭(a)

=
⋂

{↑D(πx↾D)♭(q) | a > q ∈ J(πx(D))}

where a =
∧
{a′ ∈ πx(D) | p 6 a′}. That is, the interval topology on D is the

subspace topology inherited from AX . Secondly, we show that (fC)σ must be
the coordinate-wise map f [X]↾D. Let (u1, . . . , un) ∈ Dn and x ∈ X . Then U =
{(v1, . . . , vn) ∈ Dn | (vi)x = (ui)x for each i} is open in the interval topology
and thus in the δ topology on Dn. For any U ′ open in the δ topology on Dn

with U ′ ⊆ U we have πx(f
C(U ′ ∩ Cn)) = {f [X]((u1)x, . . . , (un)x)} since fC is

f coordinate-wise. It follows that lower (and upper) envelope(s) of fC is the
coordinate-wise map f . Finally putting these two things together we see that
(fC)σ is equal to the restriction of the continuous map f [X] to the subspace D
of AX and thus fC is smooth and (fC)δ is continuous in the interval topology
as required.

To complete the proof, let (E, fE) be in H(S(PB((A, f)))). Then there is
(C, fC) ∈ S(PB((A, f))) and a surjective homomorphism h : (C, fC) ։ (E, fE).
By our proof in the previous paragraph, fC is smooth and in fact (fC)δ is (ι, ι)-
continuous. Thus Proposition 10 allows us to conclude the same of fE provided
hδ can be shown to send hδ-saturated ι-open sets to ι-open sets. To this end, let
U be an ι-open hδ-saturated subset of Cδ and let W = hδ(U). By Theorem 5,
the interval topologies on these lattices are the Scott topologies and thus we just
need to show that W is inaccessible by directed joins. Let D be directed subset
of Eδ and suppose

∨
D ∈W . Since hδ : Cδ → Eδ is a complete homomorphism,



it has a lower adjoint (hδ)♭ : Eδ → Cδ which is necessarily join preserving.
Thus (hδ)♭(D) is directed in Cδ and

∨
(hδ)♭(D) = (hδ)♭(

∨
D). Furthermore,

since U is hδ-saturated and hδ((hδ)♭(
∨
D) =

∨
D ∈ W = hδ(U), it follows that

(hδ)♭(
∨
D) ∈ U . Now, since U is ι-open and thus Scott open, it follows that

there is a d ∈ D with (hδ)♭(d) ∈ U . But then d ∈ W and we have proved that
W is Scott open. ⊓⊔
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