
COMPARISON OF MACNEILLE, CANONICAL, AND PROFINITE
COMPLETIONS

GURAM BEZHANISHVILI AND JACOB VOSMAER

Abstract. Using duality theory, we give necessary and sufficient conditions for the Mac-
Neille, canonical, and profinite completions of distributive lattices, Heyting algebras, and
Boolean algebras to be isomorphic.

1. Introduction

In the theory of lattice completions and in applications of lattice theory to logic, the
MacNeille and canonical completions play a fundamental role. The MacNeille completions
provide completeness of various predicate logics with respect to their algebraic semantics, as
was shown in [19, 16, 17]. On the other hand, the Jónsson–Tarski representation theorem for
Boolean algebras with operators [14] is the key for many completeness results in non-classical
propositional logics (such as modal and superintuitionistic logics). A connection between
the MacNeille and canonical completions was discussed in [9]. Yet another completion—the
profinite completion—has its origins in Galois theory. It has recently been shown that there
is a close connection between the canonical and profinite completions [3, 12]. The aim of
this paper is to compare these three completions for distributive lattices, Heyting algebras,
and Boolean algebras. Our main tool is duality theory.

We give a necessary and sufficient condition for the MacNeille completion L of a bounded
distributive lattice L to be isomorphic to its canonical completion Lσ. Since Lσ is isomorphic

to the profinite completion L̂ of L [3, Thm. 2.11], we obtain a criterion for the three comple-
tions to be isomorphic. The isomorphisms, however, may not commute with the embeddings

η : L ↪→ L, ζ : L ↪→ Lσ, and ι : L ↪→ L̂. We give necessary and sufficient conditions for
the isomorphisms to commute with η, ζ, and ι. When L happens to be a Heyting algebra,
our results about the isomorphism between L and Lσ apply unchanged. But now, unlike

the case of bounded distributive lattices, Lσ is not necessarily isomorphic to L̂. Therefore,
we add necessary and sufficient conditions for the existence of an isomorphism between Lσ

and L̂, and between L and L̂. Consequently, we obtain necessary and sufficient conditions
for the three completions of a Heyting algebra to be isomorphic. We also give necessary and
sufficient conditions for these isomorphisms to commute with η, ζ, and ι.

The paper is organized as follows. In Section 2 we recall the definitions and basic facts
about the MacNeille, canonical, and profinite completions. In Section 3 we recall the Priestley
duality for bounded distributive lattices, and then establish our first main results about the
isomorphism of the MacNeille, canonical, and profinite completions of bounded distributive
lattices. In Section 4 we briefly recall the Esakia duality for Heyting algebras, and then prove
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our main results about the isomorphism of the three completions for Heyting algebras. We
also discuss consequences of our results for the case of Boolean algebras. Finally, in Section
5 we briefly discuss extensions of our results to more general settings.

2. Preliminaries

In this paper we are interested in the conditions under which different completions of
distributive lattices and related algebras are isomorphic. We are mostly concerned with the
following three completions: the MacNeille completion, the canonical completion, and the
profinite completion. In this preliminary section we introduce the main definitions from the
theory of completions of lattices to make the paper self-contained.

Let P be a poset. For a ∈ P let ↑a = {x ∈ P | a ≤ x} and ↓a = {x ∈ P | x ≤ a}. We recall
that S ⊆ P is join-dense in P if for all a ∈ P we have

∨
(↓a ∩ S) exists and a =

∨
(↓a ∩ S).

The notion of a meet-dense subset of P is dual. The next lemma is well-known (see, e.g., [6,
p. 160]).

Lemma 2.1. Let L be a lattice and let S ⊆ L.

(1) S is join-dense in L iff for each a, b ∈ L with a � b, there exists s ∈ S such that
s ≤ a and s � b.

(2) S is meet-dense in L iff for each a, b ∈ L with a � b, there exists s ∈ S such that
a � s and b ≤ s.

Throughout we assume that all lattices are bounded. If not, then we can always add
a new top and bottom to them. The next definition is well-known; see, e.g., [21, 15]. Note
that we do not assume that L is a complete lattice.

Definition 2.2. Let L be a lattice.

(1) For p, q ∈ L we say that a pair (p, q) splits L if ↑p ∩ ↓q = ∅ and ↑p ∪ ↓q = L. When
(p, q) splits L, then we call (p, q) a splitting pair, p a splitting element, and q a
co-splitting element. Let S(L) denote the set of splitting elements of L and CS(L)
denote the set of co-splitting elements of L.

(2) We say that 0 6= p ∈ L is join-prime if from p ≤ a ∨ b it follows that p ≤ a or p ≤ b.
The notion of a meet-prime element is dual. Let J(L) and M(L) denote the sets of
join-prime and meet-prime elements of L, respectively.

(3) We say that 0 6= p ∈ L is completely join-prime if for each S ⊆ L such that
∨
S

exists and p ≤
∨
S, there exists s ∈ S with p ≤ s. The notion of a completely

meet-prime element is dual. Let J∞(L) and M∞(L) denote the sets of completely
join-prime and completely meet-prime elements of L, respectively.

It is easy to see that S(L) ⊆ J∞(L) ⊆ J(L) and that CS(L) ⊆ M∞(L) ⊆ M(L).
Moreover, if L is complete, then S(L) = J∞(L) and CS(L) = M∞(L). To see this, observe
that from p ∈ J∞(L) (resp. q ∈ M∞(L)) it follows that (p,

∨
{x ∈ L | p 6≤ x}) (resp.

(
∧
{x ∈ L | x 6≤ q}, q)) is a splitting pair, and so p ∈ S(L) (resp. q ∈ CS(L)). Furthermore,

if L is finite, then it is obvious that in addition we have J∞(L) = J(L) and M∞(L) = M(L).
An example of a complete lattice in which J∞(L) ⊂ J(L) (resp. M∞(L) ⊂ M(L)) is the
lattice of closed (resp. open) subsets of the real line. Indeed, singletons (resp. complements
of singletons) are join-prime (resp. meet-prime), but are not completely join-prime (resp.
completely meet-prime). An example of an incomplete lattice in which S(L) ⊂ J∞(L) (resp.
CS(L) ⊂M∞(L)) is given below.
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Figure 1. (ω × ω)⊕ ωop

Example 2.3. Let ω be the first infinite ordinal with its usual order, and consider the
(distributive) lattice L = (ω × ω) ⊕ ωop, where ⊕ is the operation of sum and ωop is the
opposite of ω (see Fig. 1). Clearly L is not complete. Moreover, each p = (0, n) or (n, 0) is
in J∞(L), but does not belong to S(L). By taking the opposite of L we obtain a lattice in
which not every completely meet-prime element is co-splitting.

Definition 2.4. Let L be a lattice.

(1) [5, p. 211] We call L principally separated if for each a, b ∈ L with a 6≤ b, there is a
splitting pair (p, q) such that p ≤ a and b ≤ q.

(2) We call L completely join-prime generated if J∞(L) is join-dense in L.

Remark 2.5. Using Lemma 2.1, it is easy to see that if L is principally separated, then S(L)
is join-dense in L. Since S(L) ⊆ J∞(L), it follows that each principally separated lattice
is completely join-prime generated. On the other hand, the lattice given in Example 2.3 is
an example of a completely join-prime generated lattice, which is not principally separated.
Nevertheless, the observations in the paragraph following Definition 2.2 imply that the two
notions are equivalent in the setting of complete lattices.

Definition 2.6. Let L be a lattice. A completion of L is a pair (C, ξ) where C is a com-
plete lattice and ξ : L → C is a lattice embedding. Given two completions of L, (C, ξ) and
(D,µ), and a lattice isomorphism f : C → D, we call f : (C, ξ)→ (D,µ) an isomorphism of
completions if f ◦ ξ = µ. We say (C, ξ) and (D,µ) are isomorphic as completions of L if
there exists an isomorphism of completions f : (C, ξ)→ (D,µ).

Now we recall the definitions of the MacNeille and canonical completions of lattices.

Definition 2.7. Let L be a lattice.
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(1) [1] The MacNeille completion of L is a pair (L, η), where L is a complete lattice and
η : L→ L is a lattice embedding such that η[L] is both join-dense and meet-dense in
L.

(2) [8] The canonical completion of L is a pair (Lσ, ζ), where Lσ is a complete lattice
and ζ : L→ Lσ is a lattice embedding such that:
(i) For each filter F and ideal I of L, from F ∩I = ∅ it follows that

∧
ζ[F ] �

∨
ζ[I].

(ii) The set KL = {
∧
ζ[S] | S ⊆ L} of closed elements is join-dense in Lσ.

(iii) The set OL = {
∨
ζ[S] | S ⊆ L} of open elements is meet-dense in Lσ.

The third completion we will be dealing with in this paper is the profinite completion.
Let L be a lattice and let ΦL = {θ ∈ ConL | L/θ is finite} be the congruences of L of finite
index. For θ, ψ ∈ ΦL with θ ⊆ ψ, let hθψ : L/θ � L/ψ be given by hθψ(a/θ) = a/ψ. Then
(ΦL,⊇) is a directed poset, and so 〈{L/θ}, hθψ〉 is an inverse system of finite homomorphic

images of L. We denote the inverse limit of 〈{L/θ}, hθψ〉 by L̂. It is well-known that

L̂ =
{
α ∈

∏
ΦL
L/θ | ∀θ, ψ ∈ ΦL with θ ⊆ ψ, if α(θ) = a/θ then α(ψ) = a/ψ

}
.

We define ι : L → L̂ by ι(a) = αa, where αa(θ) = a/θ for θ ∈ ΦL. We note that ι : L → L̂
may not be 1-1 in general, but ι is 1-1 if L is distributive (see, e.g., [3, pp. 145–146]).

Definition 2.8. [3] Let L be a distributive lattice. The profinite completion of L is the pair

(L̂, ι).

In this paper we are primarily concerned with two questions. Firstly, we want to find

necessary and sufficient conditions for the lattices L, Lσ, and L̂ to be isomorphic. Secondly,

we seek necessary and sufficient conditions for the completions (L, η), (Lσ, ζ), and (L̂, ι) to
be isomorphic as completions of L.

3. Distributive lattices

We briefly recall the basics of Priestley duality [18] for distributive lattices. For a topo-
logical space X, let I and C denote the interior and closure operators of X, respectively.
We recall that a subset U of X is clopen if U is both closed and open, and that X is zero-
dimensional if clopen subsets of X form a basis for the topology. We also recall that X is a
Stone space if X is compact, Hausdorff, and zero-dimensional.

Let 〈X,≤〉 be a partially ordered set. We call A ⊆ X an upset of X if x ∈ A and x ≤ y
imply y ∈ A. Let Up(X) denote the set of upsets of X.

Definition 3.1. A Priestley space is a triple 〈X, τ,≤〉, where 〈X, τ〉 is a compact space,
〈X,≤〉 is a partially ordered set, and 〈X, τ,≤〉 satisfies the Priestley separation axiom: For
x, y ∈ X with x � y, there exists a clopen upset U of X such that x ∈ U and y /∈ U . (Note
that the above two conditions imply that 〈X, τ〉 is a Stone space.)

By Priestley duality, the dual of a distributive lattice L is the Priestley space 〈Pr(L), τL,⊆〉,
where Pr(L) is the set of prime filters of L and τL is the topology generated by {ϕ(a)−ϕ(b) |
a, b ∈ L}; here ϕ(a) = {∇ ∈ Pr(L) | a ∈ ∇}. Conversely, the dual of a Priestley space
〈X, τ,≤〉 is the distributive lattice 〈Upτ (X),∩,∪, ∅, X〉, where Upτ (X) is the set of clopen
upsets of X. Moreover, the function ϕ : L → UpτL(Pr(L)) is a lattice isomorphism. Thus,
each distributive lattice L is represented as the lattice Upτ (X) of clopen upsets of some
Priestley space X.
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Let 〈X, τ,≤〉 be a Priestley space. If S ⊆ X, we write ↓S = {x ∈ X | ∃s ∈ S : x ≤ s}
(↑S is defined dually). Following [13, Section 3], we define the operators J and D on the
powerset of X as follows:

JS = −↓− IS,(1)

DS = ↑CS.(2)

Then for each S ⊆ X we have JS is the largest open upset contained in S and DS is the
smallest closed upset containing S. Now define

RO(X) = {S ⊆ X | JDS = S}.

Because J and D form a Galois connection between the complete lattices of open upsets and
closed upsets of X, we have that RO(X) is a complete lattice under set-theoretic inclusion
[13, Lemma 3.4].

Lemma 3.2. Let L be a distributive lattice and let 〈X, τ,≤〉 be its Priestley space. Then:

(1) There is an isomorphism f : L → RO(X) such that f ◦ η = ϕ. Therefore, (L, η) '(
RO(X), ϕ

)
.

(2) There is an isomorphism g : Lσ → Up(X) such that g ◦ ζ = ϕ. Therefore, (Lσ, ζ) '(
Up(X), ϕ

)
.

(3) There is an isomorphism h : L̂ → Up(X) such that h ◦ ι = ϕ. Therefore, (L̂, ι) '(
Up(X), ϕ

)
.

Proof. (1) As in [13], we view L, up to isomorphism, as the lattice of normal ideals of L. Then
η : L → L is given by η(a) = ↓a. It was shown in [13, Theorem 3.5] that f : L → RO(X),
given by f(I) =

⋃
{ϕ(a) | a ∈ I}, is a lattice isomorphism. We show that f ◦ η = ϕ. For

a ∈ L we have f(η(a)) = f(↓a) =
⋃
{ϕ(b) | b ≤ a} = ϕ(a).

(2) is well-known; see, e.g., [10, Section 2].

(3) It was shown in [3, Theorem 2.11] that Lσ is isomorphic to L̂. Consequently, L̂ is

isomorphic to Up(X). The isomorphism h : L̂→ Up(X) can be defined explicitly as follows.
Let θ ∈ ΦL. It is well-known that the 1-1 correspondence between congruences of L and
closed subsets of X restricts to the 1-1 correspondence between elements of ΦL and finite

subsets of X. Let Xθ be the finite subset of X corresponding to θ. For α ∈ L̂ we have
α(θ) = a/θ for some a ∈ L. Then ϕ(a) ∩ Xθ is an upset of Xθ. If there is another b ∈ L
such that α(θ) = b/θ, then ϕ(a) ∩ Xθ = ϕ(b) ∩ Xθ. Thus, ϕ(a) ∩ Xθ is independent of
a ∈ L, and we denote it by ϕ(α(θ)). Let Uα =

⋃
{ϕ(α(θ)) | θ ∈ ΦL}. We show that Uα is

an upset of X. If x ∈ Uα and x ≤ y, then there is θ ∈ ΦL such that x ∈ ϕ(α(θ)). Since
{x, y} is a finite subset of X, there is κ ∈ ΦL such that Xκ = {x, y}. Let ρ = θ ∩ κ. Then

Xρ = Xθ ∪ Xκ. Therefore, y ∈ Xρ ⊆ Uα, and so Uα ∈ Up(X). Define h : L̂ → Up(X) by
h(α) = Uα. Then h is the desired isomorphism. We show that h ◦ ι = ϕ. For a ∈ L we have
h(ι(a)) = h(αa) = Uαa . Since Uαa =

⋃
{ϕ(a) ∩Xθ | θ ∈ ΦL}, then Uαa is the union of finite

subsets of ϕ(a). But so is ϕ(a). Thus, Uαa = ϕ(a), and so h(ι(a)) = ϕ(a). �

We recall that a point x of a topological space X is isolated if {x} is an open subset of X.

Definition 3.3. Let 〈X, τ,≤〉 be a Priestley space. We call x ∈ X an order-isolated point
if both ↑x and ↓x are clopen. Let X0 denote the set of order-isolated points of X.
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Since in a Priestley space 〈X, τ,≤〉 both ↑x and ↓x are always closed for each x ∈ X,
we can equivalently define x to be order-isolated if both ↑x and ↓x are open. Clearly every
order-isolated point is isolated, but the converse is not true as follows from [2, Example 2.8].

Theorem 3.4. Let L be a distributive lattice and let X be its Priestley space.

(1) (p, q) splits L iff there is x ∈ X0 such that ϕ(p) = ↑x and ϕ(q) = −↓x.
(2) p ∈ S(L) iff there is x ∈ X0 such that ϕ(p) = ↑x.
(3) q ∈ CS(L) iff there is x ∈ X0 such that ϕ(q) = −↓x.
(4) The posets 〈S(L),≥〉, 〈CS(L),≥〉, and 〈X0,≤〉 are order-isomorphic.

Proof. (1) First suppose that there is x ∈ X0 such that ϕ(p) = ↑x and ϕ(q) = −↓x. Then
ϕ(p) 6⊆ ϕ(q), and so p 6≤ q. Therefore, ↑p ∩ ↓q = ∅. Moreover, for a ∈ L we have that either
x ∈ ϕ(a) or x /∈ ϕ(a). If x ∈ ϕ(a), then ↑x ⊆ ϕ(a), as ϕ(a) is an upset of X. Therefore,
ϕ(p) ⊆ ϕ(a), and so a ∈ ↑p. And if x /∈ ϕ(a), then ↓x ∩ ϕ(a) = ∅. Thus, ϕ(a) ⊆ −↓x, so
ϕ(a) ⊆ ϕ(q), and so a ∈ ↓q. Consequently, ↑p ∪ ↓q = L, and so (p, q) splits L.

Conversely, suppose that (p, q) splits L. Then p ∈ S(L) and q ∈ CS(L). Therefore, p is
join-prime and q is meet-prime. By [2, Thm. 2.7.1], there is x ∈ X such that ϕ(p) = ↑x.
A similar argument also gives us that there is y ∈ X such that ϕ(q) = −↓y. We show that
x = y. Since p 6≤ q, we have ϕ(p) 6⊆ ϕ(q). Therefore, ↑x 6⊆ −↓y, so ↑x ∩ ↓y 6= ∅, and so
x ≤ y. If y 6≤ x, then there is a ∈ L such that y ∈ ϕ(a) and x /∈ ϕ(a). It follows that
↑x 6⊆ ϕ(a), so ϕ(p) 6⊆ ϕ(a), and so a /∈ ↑p. Since (p, q) splits L, we have a ∈ ↓q. Therefore,
ϕ(a) ⊆ ϕ(q) = −↓y. Thus, ϕ(a) ∩ ↓y = ∅, and so y /∈ ϕ(a). The obtained contradiction
proves that y ≤ x, and so x = y. This implies that both ↑x = ϕ(p) and ↓x = −ϕ(q) are
clopen, which means that x ∈ X0. Consequently, there is x ∈ X0 such that ϕ(p) = ↑x and
ϕ(q) = −↓x.

(2) and (3) are immediate consequences of (1).
(4) It is obvious that 〈S(L),≥〉 is isomorphic to 〈CS(L),≥〉 (for p ∈ S(L), there is a

unique q ∈ CS(L) such that (p, q) is a splitting pair, and sending p to q is the desired
isomorphism). We show that 〈CS(L),≥〉 is isomorphic to 〈X0,≤〉. Let q ∈ CS(L). By (3),
there is xq ∈ X0 such that ϕ(q) = −↓xq. We define f : 〈CS(L),≥〉 → 〈X0,≤〉 by f(q) = xq,
and show that f is an order-isomorphism. That f is onto follows from (3). For q, r ∈ CS(L),
we have q ≥ r iff ϕ(q) ⊇ ϕ(r) iff −↓xq ⊇ −↓xr iff ↓xq ⊆ ↓xr iff xq ≤ xr iff f(q) ≤ f(r),
whence f is an order-isomorphism. �

Theorem 3.5. Let L be a distributive lattice and let X be its Priestley space. Then L is
principally separated iff X0 is dense in X.

Proof. Suppose that L is principally separated and let ϕ(a)−ϕ(b) 6= ∅ be a basic open subset
of X. From ϕ(a)− ϕ(b) 6= ∅ it follows that a � b. Therefore, there is a splitting pair (p, q)
such that p ≤ a and b ≤ q. By Theorem 3.4.1, there is x ∈ X0 such that ϕ(p) = ↑x and
ϕ(q) = −↓x. Thus, x ∈ ϕ(a)− ϕ(b), whence X0 is dense in X. Conversely, suppose that X0

is dense in X. Let a, b ∈ L with a 6≤ b. Then ϕ(a) 6⊆ ϕ(b), and so ϕ(a)−ϕ(b) is a nonempty
open subset of X. By density of X0, there is x ∈ X0 ∩ (ϕ(a) − ϕ(b)). Therefore, there are
p, q ∈ L such that ϕ(p) = ↑x and ϕ(q) = −↓x. By Theorem 3.4.1, (p, q) is a splitting pair.
Moreover, ϕ(p) ⊆ ϕ(a) and ϕ(b) ⊆ ϕ(q). Therefore, p ≤ a and b ≤ q, and so L is principally
separated. �

For a Priestley space 〈X, τ,≤〉, let Xiso denote the set of isolated points of X.

Lemma 3.6. If X0 is dense in X, then X0 = Xiso.
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Proof. We already pointed out that X0 is always a subset of Xiso. Suppose X0 is dense in X
and x ∈ Xiso. Then {x} ∩X0 6= ∅, implying that x ∈ X0. Thus, Xiso ⊆ X0. �

Now we give necessary and sufficient conditions for the MacNeille completion of a dis-
tributive lattice to be isomorphic to the lattice of upsets of a poset. The equivalences (2)
⇔ (3) ⇔ (7) can be found in [5, Sec. 4] (see also [6, Sec. 4]). Our contribution is the dual
characterization of such distributive lattices. Let L be a distributive lattice and let X be its
Priestley space. For a ∈ L we let ϕ0(a) = ϕ(a) ∩X0.

Theorem 3.7. For a distributive lattice L and its Priestley space X, the following conditions
are equivalent:

(1) L is completely join-prime generated.
(2) L is principally separated.
(3) L is principally separated.
(4) X0 is dense in X.
(5) There exists an isomorphism of completions ξ : (L, η)→

(
Up(X0), ϕ0

)
.

(6) L ' Up(X0).
(7) L ' Up(Y ) for some poset Y .

Proof. The equivalence (1) ⇔ (2) is obvious since L is complete; for (2) ⇔ (3) ⇔ (7) see
[5, Sec. 4]; for (3) ⇔ (4) see Theorem 3.5; and (5) ⇒ (6) ⇒ (7) are immediate. Thus, to
complete the proof, we need to show that (4) ⇒ (5).

(4) ⇒ (5): We define ε : RO(X) → Up(X0) by ε(U) = U ∩ X0. This function is well-
defined because every U ∈ RO(X) is an upset. We show that ε is an order-isomorphism.
For U, V ∈ RO(X) with U ⊆ V we have ε(U) = U ∩ X0 ⊆ V ∩ X0 = ε(V ). Suppose that
U * V . We show that U * DV . If U ⊆ DV , then U ∩ −DV = ∅. Since U is an upset, this
implies U ∩ ↓ −DV = ∅. Therefore, as JDV = V , we obtain U ⊆ −↓ −DV = JDV = V ,
a contradiction. Thus, U * DV , and so U −DV is a nonempty open subset of X. Because
X0 is dense in X, there exists x ∈ X0 ∩ (U − DV ). This implies that x ∈ U ∩ X0 and
x /∈ V ∩ X0, and so ε(U) * ε(V ). Consequently, U ⊆ V iff ε(U) ⊆ ε(V ). To see that ε is
onto, let U ∈ Up(X0). We show that ε(JDU) = U . Clearly U ⊆ JDU ∩X0 = ε(JDU). For
the converse inclusion, suppose that x ∈ ε(JDU) = JDU∩X0. Then x ∈ −↓−IDU , whence
x /∈ ↓ − IDU . It follows that ↑x ∩ −IDU = ∅. So ↑x ⊆ IDU ⊆ DU = ↑CU . Therefore,
x ∈ ↑CU , and so ↓x ∩ CU 6= ∅. Since x ∈ X0, then ↓x is open. Thus, ↓x ∩ U 6= ∅, and
as U is an upset of X0, it follows that x ∈ U . This proves that JDU ∩ X0 ⊆ U , whence
ε(JDU) = U . Consequently, ε is an isomorphism from RO(X) onto Up(X0). By Lemma
3.2, there is an isomorphism f : L → RO(X) such that f ◦ η = ϕ. We set ξ = ε ◦ f . Then
ξ ◦ η = ε ◦ f ◦ η = ε ◦ ϕ = ϕ0. Thus, there is an isomorphism ξ : L → Up(X0) such that
ξ ◦ η = ϕ0. �

Remark 3.8. It follows that if a distributive lattice is principally separated, then its Mac-
Neille completion is distributive (even completely distributive) [5, Sec. 4], thus providing a
sufficient condition for the MacNeille completion of a distributive lattice to be distributive.
(In fact, each principally separated lattice is distributive. Therefore, that L is completely
distributive already follows from L being principally separated.)

Let L be a distributive lattice. If L is principally separated, then we saw that L is
isomorphic to Up(Y ) for some poset Y . But this does not mean that L is isomorphic to the
lattice of upsets of the Priestley space of L, as the following example shows.
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Example 3.9. Let L be the negative integers with bottom, and let X be its Priestley space.
Then 〈X,≤〉 is isomorphic to the positive integers with top, L is complete and principally
separated, so L ' L, but L 6' Up(X) (see Fig. 2). Since Up(X) is isomorphic to Lσ, it
follows that Lσ 6' L.

Theorem 3.10. Let L be a distributive lattice and let X be its Priestley space. Then L is
isomorphic to Lσ iff X0 is dense in X and 〈X,≤〉 is order-isomorphic to 〈X0,≤〉.
Proof. First suppose that X0 is dense in X and 〈X,≤〉 is order-isomorphic to 〈X0,≤〉. Then
Up(X0) ' Up(X). By Theorems 3.7 and 3.2, L ' Up(X0) and Lσ ' Up(X). Thus, L ' Lσ.
Now suppose that L ' Lσ. Then L is completely join-prime generated, and by Theorem 3.7,
X0 is dense in X. Moreover, since L ' Up(X0) and Lσ ' Up(X), from L ' Lσ it follows
that Up(X0) ' Up(X). This by the well-known duality between complete and completely
join-prime generated distributive lattices and partially ordered sets implies that 〈X0,≤〉 is
order-isomorphic to 〈X,≤〉. �

Corollary 3.11. Let L be a distributive lattice and let X be its Priestley space. Then the
following conditions are equivalent:

(1) The three completions L, Lσ, and L̂ of L are isomorphic.
(2) X0 is dense in X and 〈X,≤〉 is order-isomorphic to 〈X0,≤〉.
(3) L is principally separated and the poset 〈S(L),≥〉 is order-isomorphic to the poset of

prime filters of L.

Proof. By Lemma 3.2, Lσ ' L̂. Therefore, the equivalence of (1) and (2) follows from
Theorem 3.10. That (2) is equivalent to (3) is a consequence of Theorems 3.5 and 3.4. �

Example 3.12. To show the utility of Corollary 3.11, we give several concrete examples.

(1) Let B denote the Boolean lattice of finite and cofinite subsets of ω. It is well-
known that the dual space X of B is the one-point compactification of ω, which is
homeomorphic to ω+1 in its interval topology (see Fig. 3). Therefore, X0 = Xiso = ω,
and so X0 is dense in X. Moreover, because both ω and X are countable, and ≤ is
simply the equality relation, we obtain that 〈X,≤〉 is order-isomorphic to 〈X0,≤〉.
Consequently, by Corollary 3.11, B, Bσ, and B̂ are isomorphic. Note that (B, η),

(Bσ, ζ), and (B̂, ι) cannot be isomorphic as completions because B is an infinite
Boolean algebra (see Theorem 4.8).
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0 1 2 ω

Figure 3. Example 3.12(1)

(2) Next, consider the Priestley space 〈X, τ,≤〉 shown in Fig. 4, where each (i, j) is

0, 0 1, 0 2, 0 ω, 0

0, 1 1, 1 2, 1 ω, 1

0, 2 1, 2 2, 2 ω, 2

0, n− 1 1, n− 1 2, n− 1 ω, n− 1

0, n 1, n 2, n ω, n

Figure 4. Example 3.12(2)

isolated and each (ω, j) is a limit point of X (i ∈ ω and 0 ≤ j ≤ n). Clearly
X0 = {(i, j) | i ∈ ω and 0 ≤ j ≤ n} and X is the n-point compactification of the
discrete space X0. Of course, X is a finite disjoint union of the spaces X i = {(n, i) |
n ∈ ω} ∪ {(ω, i)}, 0 ≤ i ≤ n, where each X i is the one-point compactification of the
discrete space {(n, i) | n ∈ ω}. We can view this as a generalization of the previous
example: we simply replace each point of the previous example by an (n + 1)-point
chain. It follows from the definition that X0 is dense in X, and it is easy to see that
〈X,≤〉 is order-isomorphic to 〈X0,≤〉. Let L denote the lattice of clopen upsets of

X. Then, by Corollary 3.11, L, Lσ, and L̂ are isomorphic. By Theorem 3.14, (L, η),

(Lσ, ζ), and (L̂, ι) cannot be isomorphic as completions of L.
(3) Finally, consider the Priestley space 〈X, τ,≤〉 shown in Fig. 5, where each of (i, j) is

0, 0 1, 0 2, 0 ω, 0

0, 1 1, 1 2, 1 ω, 1

ω, 20, 2 1, 2 2, 2

ω, ω0, ω 1, ω 2, ω

Figure 5. Example 3.12(3)

isolated, and each of (ω, j), (i, ω), and (ω, ω) is a limit point of X (i, j ∈ ω). Clearly
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0, 0 1, 0 2, 0 ω, 0

0, 1 1, 1 2, 1 ω, 1

ω, ω0, ω 1, ω 2, ω

0, ω + 1 1, ω + 1 2, ω + 1

1, ω + 2 2, ω + 2

2, ω + 3

Figure 6

X0 = {(i, j) | i, j ∈ ω} and X is a countable compactification of the discrete space X0.
We can think of each X i = {(0, i), (1, i), . . . , (ω, i)} ∪ {(i, 0), (i, 1) . . . , (i, ω)} as the
two-point compactification of the discrete space {(0, i), (1, i), . . . }∪{(i, 0), (i, 1), . . . },
and of X as the one-point compactification of X − {(ω, ω)} (which is not a discrete
space). Therefore, we can view this as a generalization of the previous example: we
replace each (n + 1)-point chain by an (ω + 1)-point chain. It is obvious that X0

is dense in X. However, 〈X,≤〉 is not order-isomorphic to 〈X0,≤〉. Let L denote
the lattice of clopen upsets of X. Then it follows from Corollary 3.11 that L is not

isomorphic to neither Lσ nor L̂.

Based on Example 3.12, it is tempting to conjecture that the MacNeille completion L of

a distributive lattice L is isomorphic to Lσ and L̂ only if the Priestley space of L does not
have any infinite chains. This, however, is not the case as we show in the next example.

Example 3.13. Consider the Priestley space 〈X, τ,≤〉 shown in Fig. 6, where {(ω, n) |
n ∈ ω} ∪ {(n, ω) | n ∈ ω} ∪ {(ω, ω)} are the limit points of X, and the rest are iso-
lated in X. Clearly X0 = X − ({(ω, n) | n ∈ ω} ∪ {(n, ω) | n ∈ ω} ∪ {(ω, ω)}) and
X is a countable compactification of the discrete space X0. We can think of each X i =
{(0, i), (1, i), . . . , (ω, i)} ∪ {(i, 0), (i, 1) . . . , (i, ω), (i, ω + i + 1)} as the two-point compactifi-
cation of the discrete space Xi − {(ω, i), (i, ω)}, and of X as the one point compactification
of X − {(ω, ω)} (which is not a discrete space). Therefore, we can view this as a further
generalization of the spaces in Example 3.12. Clearly X has (infinitely many) infinite chains.
It is also obvious that X0 is dense in X. We show that there is an order-isomorphism from
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0, 0 1, 0 2, 0
ω, 0

0, 1 1, 1 2, 1
ω, 1

ω, ω
0, ω 1, ω 2, ω

0, ω + 1 1, ω + 1 2, ω + 1

1, ω + 2 2, ω + 2

2, ω + 3

Figure 7

X0 onto X. Define f : X0 → X as follows:

f : (α, β) 7→


(ω, β) if α = 0, β < ω,

(ω, ω) if α = 0, β = ω + 1,

(α− 1, β) if α > 0, β < ω,

(α− 1, β − 1) if α > 0, β > ω.

The map f is shown in Fig. 7, from which it is easy to see that f is an order-isomorphism.
Let L be the lattice of clopen upsets of X. Then, by Corollary 3.11, L ' Lσ, in spite of the
fact that X has infinite ascending chains. By taking the opposite of X, we obtain an example
of a Priestley space X with infinitely descending chains such that X0 is order-isomorphic
to X. Thus, there exist distributive lattices L whose Priestley spaces have both infinitely

ascending and descending chains, but still L is isomorphic to Lσ (and hence to L̂).

The final goal of this section is to investigate when (L, η), (Lσ, ζ), and (L̂, ι) are isomorphic
as completions of L.

Theorem 3.14. Let L be a distributive lattice. The three completions (L, η), (Lσ, ζ), and

(L̂, ι) are isomorphic as completions of L iff L is finite.

Proof. By Lemma 3.2, it is sufficient to show that there is an isomorphism α : L→ Lσ such
that α◦η = ζ iff L is finite. Clearly if L is finite, then η and ζ are identities. Therefore, if we
let α be the identity, then α ◦ η = ζ. Conversely, suppose that there exists α : L→ Lσ such
that α ◦ η = ζ. Since L ' Lσ, then L is completely join-prime generated, and by Theorem
3.7, X0 is dense in X. We show that X0 = X. By Lemma 3.2, (L, η) '

(
Up(X0), ϕ0

)
and (Lσ, ζ) '

(
Up(X), ϕ

)
. Therefore, α ◦ η = ζ implies there is a lattice isomorphism

λ : Up(X0)→ Up(X) such that λ ◦ ϕ0 = ϕ. Let x ∈ X. Then ↑x ∈ Up(X). Since λ is onto,
there is U ∈ Up(X0) such that λ(U) = ↑x. We have U =

⋃
{↑y ∩X0 | y ∈ U}. From y ∈ X0
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it follows that ↑y is a clopen upset of X. Therefore, there is ay ∈ L such that ↑y = ϕ(ay).
Thus,

U =
⋃
{↑y ∩X0 | y ∈ U}

=
⋃
{ϕ(ay) ∩X0 | y ∈ U}

=
⋃
{ϕ0(ay) | y ∈ U},

and so

↑x = λ(U)
= λ(

⋃
{ϕ0(ay) | y ∈ U})

=
⋃
{λϕ0(ay) | y ∈ U})

=
⋃
{ϕ(ay) | y ∈ U}).

Consequently, there is y ∈ X0 such that ↑x = ϕ(ay) = ↑y. It follows that x = y, and so
x ∈ X0. This implies that X = X0, which together with Lemma 3.6 give us Xiso = X.
Therefore, X is discrete, hence finite by compactness. Thus, L is finite. �

We summarize matters below.

Corollary 3.15. For a distributive lattice L, the three lattices L, Lσ, and L̂ are isomorphic
iff L is principally separated and the poset 〈S(L),≥〉 is order-isomorphic to the poset of

prime filters of L. Moreover, the completions (L, η), (Lσ, ζ), and (L̂, ι) are isomorphic as
completions of L iff L is finite.

4. Heyting algebras

Recall that a distributive lattice L is a Heyting algebra if there exists a binary operation
→: L2 → L such that for all a, b, c ∈ L we have:

a ∧ c ≤ b iff c ≤ a→ b.

The duality theory for Heyting algebras was developed by Esakia [7]. As we will see shortly,
the MacNeille and canonical completions of a Heyting algebra have the same dual character-
ization as for distributive lattices. Therefore, our results about the isomorphism of L and Lσ

apply unchanged for Heyting algebras. Some simplifications are possible though, because for
a Heyting algebra A we have S(A) = J∞(A). On the other hand, the dual characterization
of the profinite completion of a Heyting algebra is different from that of a distributive lat-
tice. In this section we will adjust the results of the previous section appropriately to obtain
necessary and sufficient conditions for the MacNeille, canonical, and profinite completions of
a Heyting algebra to be isomorphic. As a corollary, we also obtain necessary and sufficient
conditions for the three completions of a Boolean algebra to be isomorphic.

Definition 4.1. [7] A triple 〈X, τ,≤〉 is an Esakia space if 〈X, τ,≤〉 is a Priestley space
and ↓U is open for each open subset U of X.

The same way distributive lattices are represented as clopen upsets of Priestley spaces,
Heyting algebras are represented as clopen upsets of Esakia spaces.

We recall that there is a 1-1 correspondence between congruences and filters of a Heyting
algebra A (see, e.g., [19, Section I.13]), and that it is obtained by associating with each
congruence θ of A, the filter Fθ = 1/θ = {a ∈ A | aθ1}, and with each filter F of A, the
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congruence θF = {(a, b) ∈ A2 | (a → b) ∧ (b → a) ∈ F}. We say that a filter F of A is of
finite index if the quotient algebra A/θF is finite.

Let A be a Heyting algebra and let X be its Esakia space. We recall that filters of A
correspond to closed upsets of X (see, e.g., [7]), and that this correspondence is obtained by
associating with each filter F of A, the closed upset CF =

⋂
{ϕ(a) | a ∈ F} of X, and with

each closed upset C of X, the filter FC = {a ∈ A | C ⊆ ϕ(a)} of A. Now, if F is a principal
filter ↑a of A, then CF = ϕ(a) is a clopen upset of X, and if C is a clopen upset of X, then
C = ϕ(a) for some a ∈ A, and so FC is the principal filter ↑a of A. Thus, principal filters of
A correspond to clopen upsets of X. Also, if F is of finite index, then CF is a finite upset
of X, and if C is a finite upset of X, then FC is of finite index. Thus, filters of A of finite
index correspond to finite upsets of X.

As we pointed out above, in a Heyting algebra A we have S(A) = J∞(A), and so for
Heyting algebras principally separated simply means completely join-prime generated. This
follows from [2, Thm. 2.7] and the dual characterization of splitting pairs of a distributive
lattice given in Theorem 3.4. We also give a simple algebraic proof. Let a ∈ J∞(A). If
↓a − {a} does not have a greatest element, then a =

∨
(↓a − {a}), which contradicts to

a ∈ J∞(A). Let b be the greatest element of ↓a−{a}. Then (a, a→ b) splits A. Indeed, for
c ∈ A, if a 6≤ c, then a ∧ c ≤ b, so c ≤ a→ b, and so a ∈ S(A).

Let X be an Esakia space. Since for x ∈ X we have x ∈ Xiso implies ↓x is clopen, we
obtain that order-isolated points of X are exactly those isolated points x of X for which ↑x
is (cl)open. We define

Xfin = {x ∈ X | ↑x is finite}.
In other words, Xfin is the union of finite upsets of X. Let ϕfin : A → Up(Xfin) be given by
ϕfin(a) = ϕ(a)∩Xfin. Then ϕfin is a lattice homomorphism, and ϕfin is an embedding iff Xfin

is dense in X [2, Theorem 3.1 and Proposition 3.2].

Lemma 4.2. Let A be a Heyting algebra and let X be its Esakia space. Then:

(1) There is an isomorphism f : A → RO(X) such that f ◦ η = ϕ. Therefore,
(A, η) '

(
RO(X), ϕ

)
. Moreover, (A, η) '

(
Up(X0), ϕ0

)
iff A is completely join-

prime generated.
(2) There is an isomorphism g : Aσ → Up(X) such that g ◦ ζ = ϕ. Therefore, (Aσ, ζ) '(

Up(X), ϕ
)
.

(3) There is an isomorphism h : Â → Up(Xfin) such that h ◦ ι = ϕfin. Therefore, if

ι : A→ Â is an embedding, then (Â, ι) '
(

Up(Xfin), ϕfin

)
.

Proof. Since A is principally separated iff A is completely join-prime generated, (1) follows
from Lemma 3.2 and Theorem 3.7. Obviously (2) is a consequence of Lemma 3.2. To see

(3), it was shown in [3, Theorem 4.7] that Â ' Up(Xfin). We recall that the isomorphism

h : Â → Up(Xfin) is explicitly defined as follows. Let ΨA denote the set of filters of A of

finite index. For F ∈ ΨA, let CF be the finite upset of X corresponding to F . For α ∈ Â and
F ∈ ΨA, we have α(F ) = a/θF for some a ∈ A. Then ϕ(a) ∩ CF is an upset of CF . If there
is another b ∈ L such that α(F ) = b/θF , then ϕ(a) ∩ CF = ϕ(b) ∩ CF . Thus, ϕ(a) ∩ CF is
independent of a ∈ L, and we denote it by ϕ(α(F )). Let Uα =

⋃
{ϕ(α(F )) | F ∈ ΨA}. Since

each CF is a finite upset of X and ϕ(α(F )) is an upset of CF , it follows that Uα is an upset

of Xfin. We define h : Â→ Up(Xfin) by h(α) = Uα. Then h is the desired isomorphism. We
show that h ◦ ι = ϕfin. For a ∈ A we have h(ι(a)) = h(αa) =

⋃
{ϕ(a) ∩ CF | F ∈ ΨA} =
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ϕ(a) ∩
⋃
{CF | F ∈ ΨA} = ϕ(a) ∩Xfin = ϕfin(a). Here we use that Xfin =

⋃
{CF | F ∈ ΨA},

which is true because Xfin is the union of finite upsets of X and each finite upset of X has
the form CF for some F ∈ ΨA. �

From Theorem 3.10 and Lemma 4.2 we immediately obtain:

Theorem 4.3. Let A be a Heyting algebra and let X be its Esakia space. Then the following
conditions are equivalent:

(1) A ' Aσ.
(2) X0 is dense in X and 〈X0,≤〉 is order-isomorphic to 〈X,≤〉.
(3) A is completely join-prime generated and 〈J∞(A),≥〉 is order-isomorphic to the poset

of prime filters of A.

Since the profinite completion of a Heyting algebra behaves differently from the profinite
completion of a distributive lattice, the comparison of the MacNeille and canonical comple-
tions of a Heyting algebra to its profinite completion is slightly different.

Theorem 4.4. Let A be a Heyting algebra and let X be its Esakia space. Then:

(1) The following conditions are equivalent:

(a) A ' Â.
(b) X0 is dense in X and 〈X0,≤〉 is order-isomorphic to 〈Xfin,≤〉.
(c) A is completely join-prime generated and 〈J∞(A),≥〉 is order-isomorphic to the

poset of prime filters of A of finite index.
(2) The following conditions are equivalent:

(a) Aσ ' Â.

(b) (Aσ, ζ) ' (Â, ι).
(c) 〈Xfin,≤〉 is order-isomorphic to 〈X,≤〉.
(d) Xfin = X.

Proof. The proof of (1) is analogous to that of Theorem 3.10. For (2), note that the equiv-
alences (a) ⇔ (c) ⇔ (d) follow from [3, Theorem 4.10]. Furthermore, it is clear that (b)
implies (a). Finally, (d) implies (b) because from Xfin = X it follows that Up(Xfin) = Up(X)
and the identity idUp(X) : Up(X)→ Up(X) is always an isomorphism of completions. �

Putting Theorems 4.3 and 4.4 together, we obtain:

Corollary 4.5. Let A be a Heyting algebra and let X be its Esakia space. Then the following
conditions are equivalent:

(1) A ' Aσ ' Â.
(2) X0 is dense in X and 〈X0,≤〉 is order-isomorphic to 〈Xfin,≤〉 = 〈X,≤〉.
(3) A is completely join-prime generated, 〈J∞(A),≥〉 is isomorphic to the poset of prime

filters of A, and every prime filter of A is of finite index.

We mention some of the consequences of these results below. We say that a Heyting
algebra A is finitely approximable, or residually finite, if a � b implies there is a filter F of
A of finite index such that a ∈ F and b /∈ F .

Corollary 4.6. Let A be a Heyting algebra and let X be its Esakia space.

(1) If the variety generated by A is finitely generated, then A ' Aσ ' Â iff X0 is dense
in X and 〈X0,≤〉 is order-isomorphic to 〈X,≤〉.
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(2) If X has infinite chains, then Aσ is not isomorphic to Â. Nevertheless, there are
Heyting algebras whose Esakia spaces have infinite chains but A is still isomorphic
to Aσ; also, there are Heyting algebras whose Esakia spaces have infinite chains but

A is still isomorphic to Â.
(3) If A is a finitely generated and finitely approximable Heyting algebra, then A is iso-

morphic to Â.

Proof. (1) follows from Corollary 4.5 and the fact that Xfin = X whenever A generates a
finitely generated variety of Heyting algebras (see, e.g., [3, Theorem 5.1]). For (2), observe
that if X has infinite chains, then Xfin 6= X, and apply Theorem 4.4.2. For an example
of a Heyting algebra A whose Esakia space has infinite chains but A is still isomorphic

to Â, observe that the Priestley space constructed in Example 3.13 is in fact an Esakia
space. Therefore, the corresponding Heyting algebra is our desired example. Finally, for
an example of a Heyting algebra A whose Esakia space has infinite chains but A is still

isomorphic to Â take the Heyting algebra A of positive integers with top. The Esakia
space X of A is order-isomorphic to the negative integers with bottom (see Fig. 8). So

X0 = Xfin, and so A ' Â ' A. For (3) observe that if A is a finitely generated and finitely
approximable Heyting algebra, then it follows from [4, Section 3.1] and [2, Theorem 3.1] that
X0 = Xiso = Xfin and that X0 is dense in X, thus the result follows from Theorem 4.4. �

Corollary 4.7. For a Boolean algebra A, the following conditions are equivalent:

(1) A ' Aσ ' Â.
(2) A is atomic and the set of atoms of A has the same cardinality as the set of ultrafilters

of A.
(3) A is atomic and the cardinality of the set of free ultrafilters of A is less than or equal

to the cardinality of the set of atoms of A.

Proof. Suppose A is a Boolean algebra and X is its Stone space. Then X0 = Xiso, there is
a bijection between atoms of A and Xiso, and A is atomic iff Xiso is dense in X. Moreover,
an order-isomorphism between X0 and X is simply a bijection. Now since the variety of
Boolean algebras is a finitely generated variety of Heyting algebras, the result follows from
Corollary 4.6.1. �
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The rest of this section we will be concerned with necessary and sufficient conditions for
the MacNeille, canonical, and profinite completions of a Heyting algebra A to be isomorphic
as completions of A. First off, as a reformulation of Theorem 3.14 we obtain:

Theorem 4.8. For a Heyting algebra A, there is an isomorphism of completions α : (A, η)→
(Aσ, ζ) iff A is finite. In particular, if A is a Boolean algebra, then (A, η) ' (Aσ, ζ) iff A is
finite.

Now we obtain a necessary and sufficient condition for an isomorphism β : A → Â to
commute with η and ι.

Lemma 4.9. Let 〈X, τ〉 be a topological space with Y ⊆ X dense in X. If Z ⊆ X is open
and Z ∩ Y is closed in X, then Z ⊆ Y .

Proof. Let τZ denote the subspace topology on Z and let CZ denote the closure operator in
〈Z, τZ〉. Since Z is open in 〈X, τ〉, we have Z∩Y is dense in 〈Z, τZ〉. Therefore, CZ(Z∩Y ) =
Z. Because Z∩Y is closed in 〈X, τ〉, it is also closed in 〈Z, τZ〉. Thus, Z∩Y = CZ(Z∩Y ) = Z.
It follows that Z ⊆ Y . �

Lemma 4.10. Let A be a Heyting algebra and let X be its Esakia space. If A ' Â, then
X0 = Xiso ⊆ Xfin. Consequently, Xfin is dense and A is finitely approximable.

Proof. Since A ' Â, it follows from Theorem 4.4.1 that X0 is dense in X, and that 〈X0,≤〉
is order-isomorphic to 〈Xfin,≤〉. As X0 is dense in X, by Lemma 3.6, X0 = Xiso. From
〈X0,≤〉 ' 〈Xfin,≤〉 it follows that ↑x ∩X0 is finite for each x ∈ X0. Since X is Hausdorff,
↑x ∩ X0 is closed. Moreover, because x ∈ X0, ↑x is open by definition; so by Lemma 4.9,
↑x ⊆ X0. Therefore, ↑x = ↑x ∩X0 is finite, whence x ∈ Xfin. It follows that X0 ⊆ Xfin, so
Xfin is dense, and so, by [2, Theorem 3.1], A is finitely approximable. �

Note that A ' Â does not imply that X0 is equal to Xfin as the following example shows.

Example 4.11. Let B be the Boolean algebra of finite and cofinite subsets of ω and let X
be its Stone space. Then X is homeomorphic to the one-point compactification of ω (see
Fig. 3), X0 = Xiso = ω and it is a proper subset of Xfin = X. On the other hand, both B

and B̂ are isomorphic to the powerset of ω. Since Bσ ' P(X) ' P(ω), because both ω and

X are countable, it follows that B ' B̂ ' Bσ.

Lemma 4.12. Let A be a Heyting algebra and let X be its Esakia space. Then the following
conditions are equivalent:

(1) Xfin ⊆ X0.
(2) Each filter of A of finite index is principal.

Proof. (1) ⇒ (2): Let F be a filter of A and let CF be the corresponding closed upset of X.
If F is of finite index, then A/θF is finite, and so CF is also finite. Therefore, by (1), CF is
a finite subset of X0, so is clopen. Thus, F is a principal filter.

(2)⇒ (1): Let x ∈ Xfin. Then ↑x is a finite closed upset ofX. Therefore, the corresponding
filter of A is of finite index, hence principal by (2). It follows that ↑x is a finite clopen upset
of X. Thus, x is an isolated point of X and ↑x is clopen, so x ∈ X0. �

As follows from [4, Chapter 3], if A is the free n-generated Heyting algebra and X is its
Esakia space, then Xfin ⊆ X0, so each filter of A of finite index is principal.
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Theorem 4.13. Let A be a Heyting algebra and let X be its Esakia space. Then the following
conditions are equivalent:

(1) There is an isomorphism of completions γ : (A, η)→ (Â, ι).
(2) X0 is dense and X0 = Xfin.
(3) A is finitely approximable and each filter of A of finite index is principal.

Proof. (1) ⇒ (2): Suppose that there is an isomorphism γ : A → Â such that γ ◦ η = ι.

Then A ' Â, so by Theorem 4.4 and Lemma 4.10, X0 is dense and X0 ⊆ Xfin. It is left to be

shown that Xfin ⊆ X0. By Lemma 4.2, (A, η) '
(

Up(X0), ϕ0

)
and (Â, ι) '

(
Up(Xfin), ϕfin

)
.

Therefore, γ ◦ η = ι implies there is a lattice isomorphism λ : Up(X0)→ Up(Xfin) such that
λ ◦ ϕ0 = ϕfin. Let x ∈ Xfin. Then ↑x ∈ Up(Xfin). Since λ is onto, there is U ∈ Up(X0) such
that λ(U) = ↑x. We have U =

⋃
{↑y ∩ X0 | y ∈ U}. From y ∈ X0 it follows that ↑y is a

clopen upset of X. Therefore, there is ay ∈ A such that ↑y = ϕ(ay). Thus,

U =
⋃
{↑y ∩X0 | y ∈ U}

=
⋃
{ϕ(ay) ∩X0 | y ∈ U}

=
⋃
{ϕ0(ay) | y ∈ U},

and so

↑x = λ(U)
= λ(

⋃
{ϕ0(ay) | y ∈ U})

=
⋃
{λϕ0(ay) | y ∈ U})

=
⋃
{ϕfin(ay) | y ∈ U}).

Consequently, there is y ∈ X0 such that ↑x = ϕfin(ay) = ϕ(ay) ∩Xfin = ↑y ∩Xfin = ↑y since
y ∈ X0 ⊆ Xfin. It follows that x = y, so x ∈ X0, and so X0 = Xfin.

(2) ⇒ (1): If X0 is dense, then by Theorem 3.7, there is an isomorphism f : A→ Up(X0)
such that f ◦ η = ϕ0. From X0 = Xfin it follows that Xfin is dense, Up(X0) = Up(Xfin), and

ϕ0 = ϕfin. By Lemma 4.2, there is an isomorphism h : Â→ Up(Xfin) such that h ◦ ι = ϕfin.

Let γ = h−1 ◦ f . Then γ : A→ Â is an isomorphism such that γ ◦ η = ι.
(2) ⇒ (3): If X0 is dense and X0 = Xfin, then Xfin is also dense, hence A is finitely

approximable by [2, Theorem 3.1]. Moreover, Xfin ⊆ X0 implies, by Lemma 4.12, that each
filter of A of finite index is principal.

(3)⇒ (2): If A is finitely approximable, then Xfin is dense by [2, Theorem 3.1]. Therefore,
X0 ⊆ Xiso ⊆ Xfin. Moreover, since each filter of A of finite index is principal, by Lemma
4.12, Xfin ⊆ X0. Thus, X0 = Xfin and X0 is dense. �

Among the examples of Heyting algebras that satisfy conditions of Theorem 4.13 are
finitely generated finitely approximable Heyting algebras (cf. Corollary 4.6.3). Thus, for
finitely generated finitely approximable Heyting algebras A, the strengthening of Corollary

4.6.3 to the isomorphism of A and Â that commutes with η and ι is an immediate consequence
of Theorem 4.13. Another immediate consequence of Theorems 4.13 and 4.8 is the following:

Corollary 4.14. For a Heyting algebra A, (A, η) ' (Aσ, ζ) ' (Â, ι) iff A is finite. In

particular, if A is a Boolean algebra, then (A, η) ' (Aσ, ζ) ' (Â, ι) iff A is finite.

We conclude by summarizing the main theorems of this section.
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Corollary 4.15. Let A be a Heyting algebra.

(1) (a) A ' Aσ iff A is completely join-prime generated and 〈J∞(A),≥〉 is order-
isomorphic to the poset of prime filters of A.

(b) (A, η) ' (Aσ, ζ) iff A is finite.

(2) (a) A ' Â iff A is completely join-prime generated and 〈J∞(A),≥〉 is order-isomorphic
to the poset of prime filters of A of finite index.

(b) (A, η) ' (Â, ι) iff A is finitely approximable and each filter of A of finite index
is principal.

(3) Aσ ' Â iff (Aσ, ζ) ' (Â, ι) iff each prime filter of A is of finite index.

(4) (a) A ' Aσ ' Â iff A is completely join-prime generated, 〈J∞(A),≥〉 is isomorphic
to the poset of prime filters of A, and each prime filter of A is of finite index.

(b) (A, η) ' (Aσ, ζ) ' (Â, ι) iff A is finite.

5. Further directions

The results of Section 4 can easily be modified to apply to modal algebras in light of
the fact that the Jónsson-Tarski duality for modal algebras is essentially the Esakia duality
formulated for modal algebras. The modal algebra case of Theorem 4.13 and Corollary 4.6.3
will be described in detail in [20].

More generally, using the duality theory developed by Goldblatt [11], we would expect
that our main results generalize to the case of distributive lattices with operators. In fact,
such results as those in [8] and [12] indicate that distributivity of the underlying lattice may
not be essential at all.
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